메뉴 건너뛰기




Volumn 74, Issue 17, 2011, Pages 5975-5986

Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis

Author keywords

Fractional differential equation; Global existence; Half axis; Initial value problem

Indexed keywords

BASIC THEORY; EXISTENCE OF SOLUTIONS; EXISTENCE RESULTS; FIXED POINT THEOREMS; FRACTIONAL DIFFERENTIAL EQUATIONS; GLOBAL EXISTENCE; GLOBAL EXISTENCE OF SOLUTIONS; HALF-AXIS; INITIAL VALUES; RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES; STABILITY ANALYSIS; SUFFICIENT CONDITIONS;

EID: 80051578253     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.na.2011.05.074     Document Type: Article
Times cited : (102)

References (38)
  • 4
    • 0021440218 scopus 로고
    • Application of fractional calculus to the theory of viscoelasticity
    • R.C. Koeller Application of fractional calculus to the theory of viscoelasticity J. Appl. Mech 51 1984 299 307
    • (1984) J. Appl. Mech , vol.51 , pp. 299-307
    • Koeller, R.C.1
  • 5
    • 33745712076 scopus 로고    scopus 로고
    • An approximate method for numerical solution of fractional differential equations
    • P. Kumar, and O.P. Agrawal An approximate method for numerical solution of fractional differential equations Signal Process. 86 2006 2602 2610
    • (2006) Signal Process. , vol.86 , pp. 2602-2610
    • Kumar, P.1    Agrawal, O.P.2
  • 6
    • 0242354999 scopus 로고    scopus 로고
    • Geometric and physical interpretation of fractional integration and fractional differentiation
    • I. Podlubny Geometric and physical interpretation of fractional integration and fractional differentiation Fract. Calc. Appl. Anal. 5 2002 367 386
    • (2002) Fract. Calc. Appl. Anal. , vol.5 , pp. 367-386
    • Podlubny, I.1
  • 7
    • 0001044887 scopus 로고
    • Relaxation in filled polymers: A fractional calculus approach
    • F. Metzler, W. Schick, H.G. Kilian, and T.F. Nonnenmacher Relaxation in filled polymers: a fractional calculus approach J. Chem. Phys. 103 1995 7180 7186
    • (1995) J. Chem. Phys. , vol.103 , pp. 7180-7186
    • Metzler, F.1    Schick, W.2    Kilian, H.G.3    Nonnenmacher, T.F.4
  • 12
    • 53949111458 scopus 로고    scopus 로고
    • Basic theory of fractional differential equations
    • V. Lakshmikantham, and A.S. Vatsala Basic theory of fractional differential equations Nonlinear Anal. 69 2008 2677 2682
    • (2008) Nonlinear Anal. , vol.69 , pp. 2677-2682
    • Lakshmikantham, V.1    Vatsala, A.S.2
  • 13
    • 1242327688 scopus 로고    scopus 로고
    • Differential equations of fractional order: Methods, results and problems i
    • A.A. Kilbas, and J.J. Trujillo Differential equations of fractional order: Methods, results and problems I Appl. Anal. 78 2001 153 192
    • (2001) Appl. Anal. , vol.78 , pp. 153-192
    • Kilbas, A.A.1    Trujillo, J.J.2
  • 14
    • 25144514177 scopus 로고    scopus 로고
    • Differential equations of fractional order: Methods, results and problems II
    • A.A. Kilbas, and J.J. Trujillo Differential equations of fractional order: Methods, results and problems II Appl. Anal. 81 2002 435 493
    • (2002) Appl. Anal. , vol.81 , pp. 435-493
    • Kilbas, A.A.1    Trujillo, J.J.2
  • 15
    • 0012072325 scopus 로고    scopus 로고
    • Operators of fractional integration and their applications
    • H.M. Srivastava, and R.K. Saxena Operators of fractional integration and their applications Appl. Math. Comput. 118 2001 1 52
    • (2001) Appl. Math. Comput. , vol.118 , pp. 1-52
    • Srivastava, H.M.1    Saxena, R.K.2
  • 16
    • 67651103488 scopus 로고    scopus 로고
    • Existence results for differential equations with fractional order and impulses, Mem. Differential Equations
    • R.P. Agarwal, M. Benchohra, and B.A. Slimani Existence results for differential equations with fractional order and impulses, Mem. Differential Equations Math. Phys. 44 2008 1 21
    • (2008) Math. Phys. , vol.44 , pp. 1-21
    • Agarwal, R.P.1    Benchohra, M.2    Slimani, B.A.3
  • 17
    • 53949105887 scopus 로고    scopus 로고
    • Some results for fractional boundary value problem of differential inclusions
    • A. Ouahab Some results for fractional boundary value problem of differential inclusions Nonlinear Anal. 69 2008 3877 3896
    • (2008) Nonlinear Anal. , vol.69 , pp. 3877-3896
    • Ouahab, A.1
  • 18
    • 44049116967 scopus 로고
    • On the fractional differential equation
    • A.M.A. El-Sayed On the fractional differential equation Appl. Math. Comput. 49 1992 205 213
    • (1992) Appl. Math. Comput. , vol.49 , pp. 205-213
    • El-Sayed, A.M.A.1
  • 19
    • 0030531939 scopus 로고    scopus 로고
    • Fractional order diffusion-wave equations
    • A.M.A. El-Sayed Fractional order diffusion-wave equations Internat. J. Theoret. Phys. 35 1996 311 322
    • (1996) Internat. J. Theoret. Phys. , vol.35 , pp. 311-322
    • El-Sayed, A.M.A.1
  • 20
    • 0032115069 scopus 로고    scopus 로고
    • Nonlinear functional differential equations of arbitrary orders
    • A.M.A. El-Sayed Nonlinear functional differential equations of arbitrary orders Nonlinear Anal. 33 1998 181 186
    • (1998) Nonlinear Anal. , vol.33 , pp. 181-186
    • El-Sayed, A.M.A.1
  • 21
    • 77955429536 scopus 로고    scopus 로고
    • Maximum principles for fractional differential equations derived from Mittag-Leffler functions
    • J.J. Nieto Maximum principles for fractional differential equations derived from Mittag-Leffler functions Appl. Math. Lett. 23 2010 1248 1251
    • (2010) Appl. Math. Lett. , vol.23 , pp. 1248-1251
    • Nieto, J.J.1
  • 22
    • 34247212711 scopus 로고    scopus 로고
    • Remarks on fractional derivatives
    • C. Li, and W. Deng Remarks on fractional derivatives Appl. Math. Comput. 187 2007 777 784
    • (2007) Appl. Math. Comput. , vol.187 , pp. 777-784
    • Li, C.1    Deng, W.2
  • 23
    • 59849083895 scopus 로고    scopus 로고
    • Integral equations and initial value problems for nonlinear differential equations of fractional order
    • N. Kosmatov Integral equations and initial value problems for nonlinear differential equations of fractional order Nonlinear Anal. 70 2009 2521 2529
    • (2009) Nonlinear Anal. , vol.70 , pp. 2521-2529
    • Kosmatov, N.1
  • 24
    • 74149085969 scopus 로고    scopus 로고
    • Approximate of solutions to fractional integral equation
    • M. Muslim, C. Conca, and A.K. Nandakumaran Approximate of solutions to fractional integral equation Comput. Math. Appl. 59 2010 1236 1244
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1236-1244
    • Muslim, M.1    Conca, C.2    Nandakumaran, A.K.3
  • 25
    • 58149289694 scopus 로고    scopus 로고
    • Existence-uniqueness result for a nonlinear n-term fractional equation
    • M. Stojanovi Existence-uniqueness result for a nonlinear n-term fractional equation J. Math. Anal. Appl. 353 2009 244 245
    • (2009) J. Math. Anal. Appl. , vol.353 , pp. 244-245
    • Stojanovi, M.1
  • 26
    • 0030528474 scopus 로고    scopus 로고
    • Existence and uniqueness for a nonlinear fractional differential equation
    • D. Delbosco, and L. Rodino Existence and uniqueness for a nonlinear fractional differential equation J. Math. Anal. Appl. 204 1996 609 625
    • (1996) J. Math. Anal. Appl. , vol.204 , pp. 609-625
    • Delbosco, D.1    Rodino, L.2
  • 27
    • 0038405057 scopus 로고    scopus 로고
    • Existence of positive solutions of nonlinear fractional differential equations
    • A. Babakhani, and V.D. Gejji Existence of positive solutions of nonlinear fractional differential equations J. Math. Anal. Appl. 278 2003 434 442
    • (2003) J. Math. Anal. Appl. , vol.278 , pp. 434-442
    • Babakhani, A.1    Gejji, V.D.2
  • 28
    • 23844442815 scopus 로고    scopus 로고
    • Existence of fractional differential equations
    • C. Yu, and G. Gao Existence of fractional differential equations J. Math. Anal. Appl. 310 2005 26 29
    • (2005) J. Math. Anal. Appl. , vol.310 , pp. 26-29
    • Yu, C.1    Gao, G.2
  • 29
    • 77951484969 scopus 로고    scopus 로고
    • Existence and uniqueness of solutions for the Cauchy-type problems of fractional differential equations
    • Article ID 142175, 15 pages
    • C.H Kou, J. Liu, and Y. Ye Existence and uniqueness of solutions for the Cauchy-type problems of fractional differential equations Disc. Dyn. Nat. Soc. 2010 Article ID 142175, 15 pages
    • (2010) Disc. Dyn. Nat. Soc.
    • Kou, C.H.1    Liu, J.2    Ye, Y.3
  • 30
    • 0012415112 scopus 로고    scopus 로고
    • Existence and uniqueness theorems for nonlinear fractional differential equations
    • A.A. Kilbas, B. Bonilla, and J.J. Trujillo Existence and uniqueness theorems for nonlinear fractional differential equations Demonstratio Math. 33 3 2000 538 602
    • (2000) Demonstratio Math. , vol.33 , Issue.3 , pp. 538-602
    • Kilbas, A.A.1    Bonilla, B.2    Trujillo, J.J.3
  • 31
    • 1942542248 scopus 로고    scopus 로고
    • Cauchy problem for fractional diffusion equations
    • S.D. Eidelman, and A.N. Kochubei Cauchy problem for fractional diffusion equations J. Differential Equations 199 2004 211 255
    • (2004) J. Differential Equations , Issue.199 , pp. 211-255
    • Eidelman, S.D.1    Kochubei, A.N.2
  • 32
    • 67349088414 scopus 로고    scopus 로고
    • Monotone iterative method for initial value problem involving RiemannLouville derivatives
    • S.Q. Zhang Monotone iterative method for initial value problem involving RiemannLouville derivatives Nonlinear Anal. 71 2009 2087 2093
    • (2009) Nonlinear Anal. , vol.71 , pp. 2087-2093
    • Zhang, S.Q.1
  • 33
    • 77049084247 scopus 로고    scopus 로고
    • Initial value problems for fractional differential equations involving RiemannLiouville sequential fractional derivative
    • Z.L. Wei, Q.D. Li, and J.L. Che Initial value problems for fractional differential equations involving RiemannLiouville sequential fractional derivative J. Math. Anal. Appl. 367 2010 260 272
    • (2010) J. Math. Anal. Appl. , vol.367 , pp. 260-272
    • Wei, Z.L.1    Li, Q.D.2    Che, J.L.3
  • 34
    • 77949263126 scopus 로고    scopus 로고
    • Unbounded solutions for fractional bounded value problems on the infinite interval
    • X. Zhao, and W. Ge Unbounded solutions for fractional bounded value problems on the infinite interval Acta Appl. Math. 109 2010 495 505
    • (2010) Acta Appl. Math. , vol.109 , pp. 495-505
    • Zhao, X.1    Ge, W.2
  • 35
    • 71649104924 scopus 로고    scopus 로고
    • Fractional order differential equations on an unbounded domain
    • A. Arara, M. Benchohra, N. Hamidi, and J.J. Nieto Fractional order differential equations on an unbounded domain Nonlinear Anal. 72 2010 580 586
    • (2010) Nonlinear Anal. , vol.72 , pp. 580-586
    • Arara, A.1    Benchohra, M.2    Hamidi, N.3    Nieto, J.J.4
  • 37
    • 0033411765 scopus 로고    scopus 로고
    • Boundary value problems of nonsingular type on the semi-infinite interval
    • R.P Agarwal, and D.O Regan Boundary value problems of nonsingular type on the semi-infinite interval Tohoku. Math. J. 51 1999 391C397
    • (1999) Tohoku. Math. J. , vol.51
    • Agarwal, R.P.1    Regan, D.O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.