-
2
-
-
85012236181
-
A framework for clustering evolving data streams
-
C. C. Aggarwal, J. Han, J. Wang, and P. Yu. A framework for clustering evolving data streams. In VLDB, pages 81-92, 2003.
-
(2003)
VLDB
, pp. 81-92
-
-
Aggarwal, C.C.1
Han, J.2
Wang, J.3
Yu, P.4
-
3
-
-
85136074496
-
A framework for projected clustering of high dimensional data streams
-
C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for projected clustering of high dimensional data streams. In VLDB, pages 852-863, 2004.
-
(2004)
VLDB
, pp. 852-863
-
-
Aggarwal, C.C.1
Han, J.2
Wang, J.3
Yu, P.S.4
-
4
-
-
0032090765
-
Automatic subspace clustering of high dimensional data for data mining applications
-
R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. ACM SIGMOD Record, 27(2):94-105, 1998.
-
(1998)
ACM SIGMOD Record
, vol.27
, Issue.2
, pp. 94-105
-
-
Agrawal, R.1
Gehrke, J.2
Gunopulos, D.3
Raghavan, P.4
-
5
-
-
0347172110
-
OPTICS: Ordering points to identify the clustering structure
-
M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. OPTICS: Ordering points to identify the clustering structure. In SIGMOD, pages 49-60, 1999.
-
(1999)
SIGMOD
, pp. 49-60
-
-
Ankerst, M.1
Breunig, M.M.2
Kriegel, H.-P.3
Sander, J.4
-
6
-
-
19544386608
-
Density connected clustering with local subspace preferences
-
C. Bohm, K. Kailing, H.-P. Kriegel, and P. Kröger. Density connected clustering with local subspace preferences. In ICDM, pages 27-34, 2004.
-
(2004)
ICDM
, pp. 27-34
-
-
Bohm, C.1
Kailing, K.2
Kriegel, H.-P.3
Kröger, P.4
-
7
-
-
11144328291
-
Incremental clustering and dynamic information retrieval
-
M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental clustering and dynamic information retrieval. SIAM Journal on Computing, 33(6):1417-1440, 2004.
-
(2004)
SIAM Journal on Computing
, vol.33
, Issue.6
, pp. 1417-1440
-
-
Charikar, M.1
Chekuri, C.2
Feder, T.3
Motwani, R.4
-
8
-
-
84945254772
-
An incremental hierarchical data clustering algorithm based on gravity theory
-
C.-Y. Chen, S.-C. Hwang, and Y.-J. Oyang. An incremental hierarchical data clustering algorithm based on gravity theory. In PAKDD, pages 237-250, 2002.
-
(2002)
PAKDD
, pp. 237-250
-
-
Chen, C.-Y.1
Hwang, S.-C.2
Oyang, Y.-J.3
-
9
-
-
19544370834
-
Incremental clustering for mining in a data warehousing environment
-
M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, and X. Xu. Incremental clustering for mining in a data warehousing environment. In VLDB, pages 323-333, 1998.
-
(1998)
VLDB
, pp. 323-333
-
-
Ester, M.1
Kriegel, H.-P.2
Sander, J.3
Wimmer, M.4
Xu, X.5
-
10
-
-
85170282443
-
A density-based algorithm for discovering clusters in large spatial databases with noise
-
M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD, pages 226-231, 1996.
-
(1996)
KDD
, pp. 226-231
-
-
Ester, M.1
Kriegel, H.-P.2
Sander, J.3
Xu, X.4
-
11
-
-
0035053182
-
Demon: Mining and monitoring evolving data
-
V. Ganti, J. Gehrke, and R. Ramakrishnan. Demon: Mining and monitoring evolving data. IEEE Transactions on Knowledge and Data Engineering, 13(1):50-63, 2001.
-
(2001)
IEEE Transactions on Knowledge and Data Engineering
, vol.13
, Issue.1
, pp. 50-63
-
-
Ganti, V.1
Gehrke, J.2
Ramakrishnan, R.3
-
12
-
-
26944494130
-
An incremental data stream clustering algorithm based on dense units detection
-
J. Gao, J. Li, Z. Zhang, and P.-N. Tan. An incremental data stream clustering algorithm based on dense units detection. In PAKDD, pages 420-425, 2005.
-
(2005)
PAKDD
, pp. 420-425
-
-
Gao, J.1
Li, J.2
Zhang, Z.3
Tan, P.-N.4
-
13
-
-
0036367429
-
Querying and mining data streams: You only get one look a tutorial
-
M. Garofalakis, J. Gehrke, and R. Rastogi. Querying and mining data streams: you only get one look a tutorial. In SIGMOD, pages 635-635, 2002.
-
(2002)
SIGMOD
, pp. 635-635
-
-
Garofalakis, M.1
Gehrke, J.2
Rastogi, R.3
-
14
-
-
0038633423
-
Clustering data streams: Theory and practice
-
S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O'Callaghan. Clustering data streams: Theory and practice. IEEE Transactions on Knowledge and Data Engineering, 15(3):515-528, 2003.
-
(2003)
IEEE Transactions on Knowledge and Data Engineering
, vol.15
, Issue.3
, pp. 515-528
-
-
Guha, S.1
Meyerson, A.2
Mishra, N.3
Motwani, R.4
O'Callaghan, L.5
-
16
-
-
84893405732
-
Data clustering: A review
-
A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Computer Surveys, 31(3):264-323, 1999.
-
(1999)
ACM Computer Surveys
, vol.31
, Issue.3
, pp. 264-323
-
-
Jain, A.K.1
Murty, M.N.2
Flynn, P.J.3
-
17
-
-
33751304792
-
Incremental optics: Efficient computation of updates in a hierarchical cluster ordering
-
H.-P. Kriegel, P. Kröger, and I. Gotlibovich. Incremental optics: Efficient computation of updates in a hierarchical cluster ordering. In DaWaK, pages 224-233, 2003.
-
(2003)
DaWaK
, pp. 224-233
-
-
Kriegel, H.-P.1
Kröger, P.2
Gotlibovich, I.3
-
18
-
-
67149084291
-
Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering
-
H.-P. Kriegel, P. Kröger, and A. Zimek. Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. IEEE Transactions on Knowledge and Data Engineering, 3(1):1-58, 2009.
-
(2009)
IEEE Transactions on Knowledge and Data Engineering
, vol.3
, Issue.1
, pp. 1-58
-
-
Kriegel, H.-P.1
Kröger, P.2
Zimek, A.3
-
19
-
-
32344444779
-
A generalized framework for mining spatio-temporal patterns in scientific data
-
H. Yang, S. Parthasarathy, and S. Mehta. A generalized framework for mining spatio-temporal patterns in scientific data. In KDD, pages 716-721, 2005.
-
(2005)
KDD
, pp. 716-721
-
-
Yang, H.1
Parthasarathy, S.2
Mehta, S.3
-
20
-
-
21944442892
-
BIRCH: A new data clustering algorithm and its applications
-
T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: A new data clustering algorithm and its applications. Data Mining and Knowledge Discovery, 1(2):141-182, 1997.
-
(1997)
Data Mining and Knowledge Discovery
, vol.1
, Issue.2
, pp. 141-182
-
-
Zhang, T.1
Ramakrishnan, R.2
Livny, M.3
|