메뉴 건너뛰기




Volumn , Issue , 2010, Pages 31-38

Towards subspace clustering on dynamic data: An incremental version of PreDeCon

Author keywords

[No Author keywords available]

Indexed keywords

DENSITY-BASED; DYNAMIC NATURE; FEATURE SPACE; HIGH DIMENSIONALITY; HIGH-DIMENSIONAL; ON DYNAMICS; PROJECTED CLUSTERING; RESEARCH AREAS; SUBSPACE CLUSTERING; SUBSPACE CLUSTERS;

EID: 77956233065     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1833280.1833285     Document Type: Conference Paper
Times cited : (8)

References (20)
  • 2
    • 85012236181 scopus 로고    scopus 로고
    • A framework for clustering evolving data streams
    • C. C. Aggarwal, J. Han, J. Wang, and P. Yu. A framework for clustering evolving data streams. In VLDB, pages 81-92, 2003.
    • (2003) VLDB , pp. 81-92
    • Aggarwal, C.C.1    Han, J.2    Wang, J.3    Yu, P.4
  • 3
    • 85136074496 scopus 로고    scopus 로고
    • A framework for projected clustering of high dimensional data streams
    • C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for projected clustering of high dimensional data streams. In VLDB, pages 852-863, 2004.
    • (2004) VLDB , pp. 852-863
    • Aggarwal, C.C.1    Han, J.2    Wang, J.3    Yu, P.S.4
  • 4
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. ACM SIGMOD Record, 27(2):94-105, 1998.
    • (1998) ACM SIGMOD Record , vol.27 , Issue.2 , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 5
    • 0347172110 scopus 로고    scopus 로고
    • OPTICS: Ordering points to identify the clustering structure
    • M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. OPTICS: Ordering points to identify the clustering structure. In SIGMOD, pages 49-60, 1999.
    • (1999) SIGMOD , pp. 49-60
    • Ankerst, M.1    Breunig, M.M.2    Kriegel, H.-P.3    Sander, J.4
  • 6
    • 19544386608 scopus 로고    scopus 로고
    • Density connected clustering with local subspace preferences
    • C. Bohm, K. Kailing, H.-P. Kriegel, and P. Kröger. Density connected clustering with local subspace preferences. In ICDM, pages 27-34, 2004.
    • (2004) ICDM , pp. 27-34
    • Bohm, C.1    Kailing, K.2    Kriegel, H.-P.3    Kröger, P.4
  • 7
  • 8
    • 84945254772 scopus 로고    scopus 로고
    • An incremental hierarchical data clustering algorithm based on gravity theory
    • C.-Y. Chen, S.-C. Hwang, and Y.-J. Oyang. An incremental hierarchical data clustering algorithm based on gravity theory. In PAKDD, pages 237-250, 2002.
    • (2002) PAKDD , pp. 237-250
    • Chen, C.-Y.1    Hwang, S.-C.2    Oyang, Y.-J.3
  • 9
    • 19544370834 scopus 로고    scopus 로고
    • Incremental clustering for mining in a data warehousing environment
    • M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, and X. Xu. Incremental clustering for mining in a data warehousing environment. In VLDB, pages 323-333, 1998.
    • (1998) VLDB , pp. 323-333
    • Ester, M.1    Kriegel, H.-P.2    Sander, J.3    Wimmer, M.4    Xu, X.5
  • 10
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD, pages 226-231, 1996.
    • (1996) KDD , pp. 226-231
    • Ester, M.1    Kriegel, H.-P.2    Sander, J.3    Xu, X.4
  • 12
    • 26944494130 scopus 로고    scopus 로고
    • An incremental data stream clustering algorithm based on dense units detection
    • J. Gao, J. Li, Z. Zhang, and P.-N. Tan. An incremental data stream clustering algorithm based on dense units detection. In PAKDD, pages 420-425, 2005.
    • (2005) PAKDD , pp. 420-425
    • Gao, J.1    Li, J.2    Zhang, Z.3    Tan, P.-N.4
  • 13
    • 0036367429 scopus 로고    scopus 로고
    • Querying and mining data streams: You only get one look a tutorial
    • M. Garofalakis, J. Gehrke, and R. Rastogi. Querying and mining data streams: you only get one look a tutorial. In SIGMOD, pages 635-635, 2002.
    • (2002) SIGMOD , pp. 635-635
    • Garofalakis, M.1    Gehrke, J.2    Rastogi, R.3
  • 17
    • 33751304792 scopus 로고    scopus 로고
    • Incremental optics: Efficient computation of updates in a hierarchical cluster ordering
    • H.-P. Kriegel, P. Kröger, and I. Gotlibovich. Incremental optics: Efficient computation of updates in a hierarchical cluster ordering. In DaWaK, pages 224-233, 2003.
    • (2003) DaWaK , pp. 224-233
    • Kriegel, H.-P.1    Kröger, P.2    Gotlibovich, I.3
  • 18
    • 67149084291 scopus 로고    scopus 로고
    • Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering
    • H.-P. Kriegel, P. Kröger, and A. Zimek. Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. IEEE Transactions on Knowledge and Data Engineering, 3(1):1-58, 2009.
    • (2009) IEEE Transactions on Knowledge and Data Engineering , vol.3 , Issue.1 , pp. 1-58
    • Kriegel, H.-P.1    Kröger, P.2    Zimek, A.3
  • 19
    • 32344444779 scopus 로고    scopus 로고
    • A generalized framework for mining spatio-temporal patterns in scientific data
    • H. Yang, S. Parthasarathy, and S. Mehta. A generalized framework for mining spatio-temporal patterns in scientific data. In KDD, pages 716-721, 2005.
    • (2005) KDD , pp. 716-721
    • Yang, H.1    Parthasarathy, S.2    Mehta, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.