-
3
-
-
46749142523
-
Long-term sunspot number prediction based on EMD analysis and AR model
-
T. Xu, J. Wu, Z. Wu, and Q. Li, "Long-term sunspot number prediction based on EMD analysis and AR model," Chin. J. Astron. Astrophys., vol. 8, pp. 337-342, 2008.
-
(2008)
Chin. J. Astron. Astrophys.
, vol.8
, pp. 337-342
-
-
Xu, T.1
Wu, J.2
Wu, Z.3
Li, Q.4
-
4
-
-
79955429033
-
TEMPUS: A prototype system for time series analysis and prediction
-
IADIS Press
-
T. Schlüter and S. Conrad, "TEMPUS: A Prototype System for Time Series Analysis and Prediction," in IADIS European Conf. on Data Mining 2010. IADIS Press, 2010, pp. 11-18.
-
(2010)
IADIS European Conf. on Data Mining 2010
, pp. 11-18
-
-
Schlüter, T.1
Conrad, S.2
-
5
-
-
0034012660
-
Time series analysis of geological data
-
G. Cimino, G. D. Duce, L. K. Kadonaga, G. Rotundo, A. Sisani, G. Stabile, B. Tirozzi, and M. Whiticar, "Time series analysis of geological data," Chemical Geology, vol. 161, pp. 253 - 270, 1999.
-
(1999)
Chemical Geology
, vol.161
, pp. 253-270
-
-
Cimino, G.1
Duce, G.D.2
Kadonaga, L.K.3
Rotundo, G.4
Sisani, A.5
Stabile, G.6
Tirozzi, B.7
Whiticar, M.8
-
6
-
-
77957873516
-
Rule discovery from time series
-
G. Das, K. Lin, H. Mannila, G. Renganathan, and P. Smyth, "Rule discovery from time series," in Knowledge Discovery and Data Mining, 1998, pp. 16-22.
-
(1998)
Knowledge Discovery and Data Mining
, pp. 16-22
-
-
Das, G.1
Lin, K.2
Mannila, H.3
Renganathan, G.4
Smyth, P.5
-
7
-
-
0029212693
-
Mining sequential patterns
-
IEEE Computer Society Press
-
R. Agrawal and R. Srikant, "Mining sequential patterns," in ICDE. IEEE Computer Society Press, 1995.
-
(1995)
ICDE
-
-
Agrawal, R.1
Srikant, R.2
-
8
-
-
0031702885
-
Cyclic association rules
-
B. Ozden, S. Ramaswamy, and A. Silberschatz, "Cyclic association rules," in ICDE, 1998, pp. 412-421.
-
(1998)
ICDE
, pp. 412-421
-
-
Ozden, B.1
Ramaswamy, S.2
Silberschatz, A.3
-
9
-
-
0041454634
-
Discovering calendar-based temporal association rules
-
Y. Li, P. Ning, X. S. Wang, and S. Jajodia, "Discovering calendar-based temporal association rules," in TIME, 2001, pp. 111-118.
-
(2001)
TIME
, pp. 111-118
-
-
Li, Y.1
Ning, P.2
Wang, X.S.3
Jajodia, S.4
-
10
-
-
0013110524
-
Using association rules for product assortment decisions: A case study
-
T. Brijs, G. Swinnen, K. Vanhoof, and G. Wets, "Using association rules for product assortment decisions: A case study," in Knowledge Discovery and Data Mining, 1999, pp. 254-260.
-
(1999)
Knowledge Discovery and Data Mining
, pp. 254-260
-
-
Brijs, T.1
Swinnen, G.2
Vanhoof, K.3
Wets, G.4
-
11
-
-
0027621699
-
Mining association rules between sets of items in large databases
-
Washington, D.C.
-
R. Agrawal, T. Imielinski, and A. N. Swami, "Mining association rules between sets of items in large databases," in Proc. ACM SIGMOD Int. Conf. Management of Data, Washington, D.C., 1993, pp. 207-216.
-
(1993)
Proc. ACM SIGMOD Int. Conf. Management of Data
, pp. 207-216
-
-
Agrawal, R.1
Imielinski, T.2
Swami, A.N.3
-
13
-
-
0039253846
-
Mining frequent patterns without candidate generation
-
New York, NY, USA: ACM
-
J. Han, J. Pei, and Y. Yin, "Mining frequent patterns without candidate generation," in SIGMOD '00: Proc. of the ACM SIGMOD Int. Conf. on Management of data. New York, NY, USA: ACM, 2000, pp. 1-12.
-
(2000)
SIGMOD '00: Proc. of the ACM SIGMOD Int. Conf. on Management of Data
, pp. 1-12
-
-
Han, J.1
Pei, J.2
Yin, Y.3
-
14
-
-
0002784345
-
Algorithms for association rule mining a general survey and comparison
-
J. Hipp, U. Güntzer, and G. Nakhaeizadeh, "Algorithms for association rule mining a general survey and comparison," SIGKDD Explor. Newsl., vol. 2, pp. 58-64, 2000.
-
(2000)
SIGKDD Explor. Newsl.
, vol.2
, pp. 58-64
-
-
Hipp, J.1
Güntzer, U.2
Nakhaeizadeh, G.3
-
15
-
-
0033704970
-
Algorithms for computing association rules using a partial-support tree
-
G. Goulbourne, F. Coenen, and P. H. Leng, "Algorithms for computing association rules using a partial-support tree," Knowledge Based Systems, vol. 13, no. 2-3, pp. 141-149, 2000.
-
(2000)
Knowledge Based Systems
, vol.13
, Issue.2-3
, pp. 141-149
-
-
Goulbourne, G.1
Coenen, F.2
Leng, P.H.3
-
17
-
-
0035016443
-
PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth
-
J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M. Hsu, "Prefixspan: Mining sequential patterns by prefix-projected growth," in ICDE. IEEE Computer Society, 2001, pp. 215-224. (Pubitemid 32457120)
-
(2001)
Proceedings - International Conference on Data Engineering
, pp. 215-224
-
-
Pei, J.1
Han, J.2
Mortazavi-Asl, B.3
Pinto, H.4
Chen, Q.5
Dayal, U.6
Hsu, M.-C.7
-
18
-
-
35448931869
-
Discovering generalized episodes using minimal occurrences
-
H. Mannila and H. Toivonen, "Discovering generalized episodes using minimal occurrences," in KDD, 1996, pp. 146-151.
-
(1996)
KDD
, pp. 146-151
-
-
Mannila, H.1
Toivonen, H.2
-
19
-
-
27144468394
-
Discovery of frequent episodes in event sequences
-
H. Mannila, H. Toivonen, and A. Inkeri Verkamo, "Discovery of frequent episodes in event sequences," Data Min. Knowl. Discov., vol. 1, 1997.
-
(1997)
Data Min. Knowl. Discov.
, vol.1
-
-
Mannila, H.1
Toivonen, H.2
Inkeri Verkamo, A.3
-
20
-
-
84884622937
-
Discovering sequential association rules with constraints and time lags in multiple sequences
-
ser. ISMIS '02. London, UK, UK: Springer-Verlag
-
S. K. Harms, J. S. Deogun, and T. Tadesse, "Discovering sequential association rules with constraints and time lags in multiple sequences," in Proc. of the 13th Int. Symp. on Foundations of Intelligent Systems, ser. ISMIS '02. London, UK, UK: Springer-Verlag, 2002, pp. 432-441.
-
(2002)
Proc. of the 13th Int. Symp. on Foundations of Intelligent Systems
, pp. 432-441
-
-
Harms, S.K.1
Deogun, J.S.2
Tadesse, T.3
-
21
-
-
0032627945
-
Efficient mining of partial periodic patterns in time series database
-
J. Han, G. Dong, and Y. Yin, "Efficient mining of partial periodic patterns in time series database," in Proc. ICDE, 1999, pp. 106-115.
-
(1999)
Proc. ICDE
, pp. 106-115
-
-
Han, J.1
Dong, G.2
Yin, Y.3
-
22
-
-
84947563969
-
Discovering temporal patterns for interval-based events
-
ser. Lecture Notes in Computer Science, Y. Kambayashi, M. Mohania, and A. Tjoa, Eds. Springer Berlin / Heidelberg
-
P.-S. Kam and A. Fu, "Discovering temporal patterns for interval-based events," in Data Warehousing and Knowledge Discovery, ser. Lecture Notes in Computer Science, Y. Kambayashi, M. Mohania, and A. Tjoa, Eds. Springer Berlin / Heidelberg, 2000, vol. 1874, pp. 317-326.
-
(2000)
Data Warehousing and Knowledge Discovery
, vol.1874
, pp. 317-326
-
-
Kam, P.-S.1
Fu, A.2
-
24
-
-
34250202878
-
ARMADA - An algorithm for discovering richer relative temporal association rules from interval-based data
-
DOI 10.1016/j.datak.2006.10.009, PII S0169023X06001935, Data Warehouse and Knowledge Discovery (DAWAK '05)
-
E. Winarko and J. F. Roddick, "Armada-an algorithm for discovering richer relative temporal association rules from interval-based data," Data Knowl. Eng., vol. 63, no. 1, pp. 76-90, 2007. (Pubitemid 46899256)
-
(2007)
Data and Knowledge Engineering
, vol.63
, Issue.1
, pp. 76-90
-
-
Winarko, E.1
Roddick, J.F.2
-
25
-
-
0020849266
-
Maintaining knowledge about temporal intervals
-
J. F. Allen, "Maintaining knowledge about temporal intervals," Commun. ACM, vol. 26, pp. 832-843, 1983.
-
(1983)
Commun. ACM
, vol.26
, pp. 832-843
-
-
Allen, J.F.1
-
26
-
-
33745781710
-
A symbolic representation of time series, with implications for streaming algorithms
-
M. J. Zaki and C. C. Aggarwal, Eds. ACM
-
J. Lin, E. J. Keogh, S. Lonardi, and B. Y. chi Chiu, "A symbolic representation of time series, with implications for streaming algorithms," in DMKD, M. J. Zaki and C. C. Aggarwal, Eds. ACM, 2003, pp. 2-11.
-
(2003)
DMKD
, pp. 2-11
-
-
Lin, J.1
Keogh, E.J.2
Lonardi, S.3
Chi Chiu, B.Y.4
-
27
-
-
26944478356
-
Segmenting time series: A survey and novel approach
-
Published by World Scientific
-
E. Keogh, S. Chu, D. Hart, and M. Pazzani, "Segmenting time series: A survey and novel approach," in Data mining in Time Series Databases. Published by World Scientific, 1993, pp. 1-22.
-
(1993)
Data Mining in Time Series Databases
, pp. 1-22
-
-
Keogh, E.1
Chu, S.2
Hart, D.3
Pazzani, M.4
-
28
-
-
76249085664
-
Segmentation and classification of time-series: Real case studies
-
ser. Lecture Notes in Computer Science, E. Corchado and H. Yin, Eds. Springer Berlin / Heidelberg
-
J. Molina, J. Garcia, A. Garcia, R. Melo, and L. Correia, "Segmentation and classification of time-series: Real case studies," in Intelligent Data Engineering and Automated Learning-IDEAL 2009, ser. Lecture Notes in Computer Science, E. Corchado and H. Yin, Eds. Springer Berlin / Heidelberg, 2009, vol. 5788, pp. 743-750.
-
(2009)
Intelligent Data Engineering and Automated Learning-IDEAL 2009
, vol.5788
, pp. 743-750
-
-
Molina, J.1
Garcia, J.2
Garcia, A.3
Melo, R.4
Correia, L.5
-
33
-
-
0037330341
-
A review of symbolic analysis of experimental data
-
C. S. Daw, C. E. A. Finney, and E. R. Tracy, "A review of symbolic analysis of experimental data," Review of Scientific Instruments, vol. 74, no. 2, pp. 915-930, 2003.
-
(2003)
Review of Scientific Instruments
, vol.74
, Issue.2
, pp. 915-930
-
-
Daw, C.S.1
Finney, C.E.A.2
Tracy, E.R.3
-
34
-
-
49549093774
-
Discretization techniques: A recent survey
-
S. Kotsiantis and D. Kanellopoulos, "Discretization techniques: A recent survey," GESTS Int. Transactions on Computer Science and Engineering, vol. 32, no. 1, pp. 47-58, 2006.
-
(2006)
GESTS Int. Transactions on Computer Science and Engineering
, vol.32
, Issue.1
, pp. 47-58
-
-
Kotsiantis, S.1
Kanellopoulos, D.2
-
35
-
-
34548093287
-
Experiencing SAX: A novel symbolic representation of time series
-
DOI 10.1007/s10618-007-0064-z
-
J. Lin, E. Keogh, L. Wei, and S. Lonardi, "Experiencing sax: a novel symbolic representation of time series," Data Mining and Knowledge Discovery, vol. 15, pp. 107-144, 2007, 10.1007/s10618-007-0064-z. (Pubitemid 47293484)
-
(2007)
Data Mining and Knowledge Discovery
, vol.15
, Issue.2
, pp. 107-144
-
-
Lin, J.1
Keogh, E.2
Wei, L.3
Lonardi, S.4
-
36
-
-
79961185884
-
-
last visited 02/2011. [Online]
-
Eamonn Keogh, "SAX homepage," last visited 02/2011. [Online]. Available: http://www.cs.ucr.edu/~eamonn/SAX.htm
-
SAX Homepage
-
-
Keogh, E.1
-
37
-
-
0003585297
-
-
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
-
J. Han, Data Mining: Concepts and Techniques. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2005.
-
(2005)
Data Mining: Concepts and Techniques
-
-
Han, J.1
-
39
-
-
0026902042
-
An information theoretic approach to rule induction from databases
-
P. Smyth and R. M. Goodman, "An information theoretic approach to rule induction from databases," IEEE Trans. Knowl. Data Eng., vol. 4, no. 4, pp. 301-316, 1992.
-
(1992)
IEEE Trans. Knowl. Data Eng.
, vol.4
, Issue.4
, pp. 301-316
-
-
Smyth, P.1
Goodman, R.M.2
-
40
-
-
84865085622
-
-
last visited 02/2012. [Online]
-
Pavel Senin, "SAX-jmotif-homepage," last visited 02/2012. [Online]. Available: http://code.google.com/p/jmotif/wiki/SAX
-
SAX-jmotif-homepage
-
-
Senin, P.1
-
41
-
-
76749092270
-
The weka data mining software: An update
-
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, "The weka data mining software: an update," SIGKDD Explor. Newsl., vol. 11, pp. 10-18, 2009.
-
(2009)
SIGKDD Explor. Newsl.
, vol.11
, pp. 10-18
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.H.6
-
42
-
-
21844471761
-
Clustering of time-series subsequences is meaningless: Implications for previous and future research
-
DOI 10.1007/s10115-004-0172-7
-
E. Keogh and J. Lin, "Clustering of time-series subsequences is meaningless: implications for previous and future research," Knowl. Inf. Syst., vol. 8, pp. 154-177, 2005. (Pubitemid 40951989)
-
(2005)
Knowledge and Information Systems
, vol.8
, Issue.2
, pp. 154-177
-
-
Keogh, E.1
Lin, J.2
|