-
1
-
-
36148970459
-
Basins of attraction of a nonlinear nanomechanical resonator
-
DOI 10.1103/PhysRevLett.99.207201
-
I. Kozinsky, H. W. C. Postma, O. Kogan, A. Husain, and M. L. Roukes, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.99.207201 99, 207201 (2007). (Pubitemid 350113505)
-
(2007)
Physical Review Letters
, vol.99
, Issue.20
, pp. 207201
-
-
Kozinsky, I.1
Postma, H.W.Ch.2
Kogan, O.3
Husain, A.4
Roukes, M.L.5
-
2
-
-
19744378198
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.93.207002
-
I. Siddiqi, R. Vijay, F. Pierre, C.A M. Wilson, M. Metcalfe, C. Rigetti, L. Frunzio, and M. H. Devoret, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.93.207002 93, 207002 (2004);
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 207002
-
-
Siddiqi, I.1
Vijay, R.2
Pierre, F.3
Wilson, C.A.M.4
Metcalfe, M.5
Rigetti, C.6
Frunzio, L.7
Devoret, M.H.8
-
3
-
-
18144407315
-
Direct observation of dynamical bifurcation between two driven oscillation states of a josephson junction
-
DOI 10.1103/PhysRevLett.94.027005, 027005
-
I. Siddiqi, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.94. 027005 94, 027005 (2005). (Pubitemid 40620176)
-
(2005)
Physical Review Letters
, vol.94
, Issue.2
, pp. 1-4
-
-
Siddiqi, I.1
Vijay, R.2
Pierre, F.3
Wilson, C.M.4
Frunzio, L.5
Metcalfe, M.6
Rigetti, C.7
Schoelkopf, R.J.8
Devoret, M.H.9
Vion, D.10
Esteve, D.11
-
4
-
-
33344468353
-
Dispersive measurements of superconducting qubit coherence with a fast latching readout
-
DOI 10.1103/PhysRevB.73.054510, 054510
-
I. Siddiqi, R. Vijay, M.A Metcalfe, E. Boaknin, L. Frunzio, R. J. Schoelkopf, and M. H. Devoret, Phys. Rev. B PRLTAO 1098-0121 10.1103/PhysRevB.73.054510 73, 054510 (2006). (Pubitemid 43291114)
-
(2006)
Physical Review B - Condensed Matter and Materials Physics
, vol.73
, Issue.5
, pp. 1-6
-
-
Siddiqi, I.1
Vijay, R.2
Metcalfe, M.3
Boaknin, E.4
Frunzio, L.5
Schoelkopf, R.J.6
Devoret, M.H.7
-
5
-
-
34547482569
-
-
PRLTAO 1098-0121 10.1103/PhysRevB.76.014524
-
V. E. Manucharyan, E. Boaknin, M. Metcalfe, R. Vijay, I.A Siddiqi, and M. Devoret, Phys. Rev. B PRLTAO 1098-0121 10.1103/PhysRevB.76.014524 76, 014524 (2007).
-
(2007)
Phys. Rev. B
, vol.76
, pp. 014524
-
-
Manucharyan, V.E.1
Boaknin, E.2
Metcalfe, M.3
Vijay, R.4
Siddiqi, I.A.5
Devoret, M.6
-
6
-
-
33846785510
-
-
PRLTAO 1745-2473 10.1038/nphys509
-
A. Lupascu, Nat. Phys. PRLTAO 1745-2473 10.1038/nphys509 3, 119 (2007).
-
(2007)
Nat. Phys.
, vol.3
, pp. 119
-
-
Lupascu, A.1
-
7
-
-
34547404831
-
Signatures for a classical to quantum transition of a driven nonlinear nanomechanical resonator
-
DOI 10.1103/PhysRevLett.99.040404
-
I. Katz, A. Retzker, R. Straub, and R.A Lifshitz, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.99.040404 99, 040404 (2007); (Pubitemid 47173787)
-
(2007)
Physical Review Letters
, vol.99
, Issue.4
, pp. 040404
-
-
Katz, I.1
Retzker, A.2
Straub, R.3
Lifshitz, R.4
-
8
-
-
59349104923
-
-
NJOPFM 1367-2630 10.1088/1367-2630/10/12/125023
-
I. Katz, R. Lifshitz, A. Retzker, and R.A Straub, New J. Phys. NJOPFM 1367-2630 10.1088/1367-2630/10/12/125023 10, 125023 (2008).
-
(2008)
New J. Phys.
, vol.10
, pp. 125023
-
-
Katz, I.1
Lifshitz, R.2
Retzker, A.3
Straub, R.A.4
-
10
-
-
33244474900
-
-
CMPHC2 0301-0104 10.1016/j.chemphys.2005.06.047
-
V. Peano and M. Thorwart, Chem. Phys. CMPHC2 0301-0104 10.1016/j.chemphys.2005.06.047 322, 135 (2006);
-
(2006)
Chem. Phys.
, vol.322
, pp. 135
-
-
Peano, V.1
Thorwart, M.2
-
11
-
-
33646352735
-
Nonlinear response of a driven vibrating nanobeam in the quantum regime
-
DOI 10.1088/1367-2630/8/2/021, PII S1367263006137362
-
V. Peano and M. Thorwart, New J. Phys. NJOPFM 1367-2630 10.1088/1367-2630/8/2/021 8, 21 (2006). (Pubitemid 43670272)
-
(2006)
New Journal of Physics
, vol.8
, pp. 21
-
-
Peano, V.1
Thorwart, M.2
-
12
-
-
27244447842
-
Scaling in activated escape of underdamped systems
-
DOI 10.1103/PhysRevE.72.021102, 021102
-
M. I. Dykman, I. B. Schwartz, and M. Shapiro, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.72.021102 72, 021102 (2005). (Pubitemid 41520830)
-
(2005)
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
, vol.72
, Issue.2
, pp. 1-8
-
-
Dykman, M.I.1
Schwartz, I.B.2
Shapiro, M.3
-
15
-
-
34748851475
-
Dynamical tunneling in macroscopic systems
-
DOI 10.1103/PhysRevLett.99.137001
-
I. Serban and F. K. Wilhelm, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.99.137001 99, 137001 (2007). (Pubitemid 47480011)
-
(2007)
Physical Review Letters
, vol.99
, Issue.13
, pp. 137001
-
-
Serban, I.1
Wilhelm, F.K.2
-
17
-
-
19544370682
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.93.107002
-
N. Gronbech-Jensen, M. G. Castellano, F. Chiarello, M. Cirillo, C. Cosmelli, L. V. Filippenko, R. Russo, and G. Torrioli, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.93.107002 93, 107002 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 107002
-
-
Gronbech-Jensen, N.1
Castellano, M.G.2
Chiarello, F.3
Cirillo, M.4
Cosmelli, C.5
Filippenko, L.V.6
Russo, R.7
Torrioli, G.8
-
18
-
-
27144470208
-
Rabi-type oscillations in a classical Josephson junction
-
DOI 10.1103/PhysRevLett.95.067001, 067001
-
N. Gronbech-Jensen and M. Cirillo, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.95.067001 95, 067001 (2005). (Pubitemid 41506096)
-
(2005)
Physical Review Letters
, vol.95
, Issue.6
, pp. 1-4
-
-
Gronbech-Jensen, N.1
Cirillo, M.2
-
19
-
-
34247520218
-
Catastrophe observation in a Josephson-junction system
-
DOI 10.1103/PhysRevLett.98.177002
-
M. G. Castellano, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett. 98.177002 98, 177002 (2007). (Pubitemid 46659440)
-
(2007)
Physical Review Letters
, vol.98
, Issue.17
, pp. 177002
-
-
Castellano, M.G.1
Chiarello, F.2
Leoni, R.3
Mattioli, F.4
Torrioli, G.5
Carelli, P.6
Cirillo, M.7
Cosmelli, C.8
De Waard, A.9
Frossati, G.10
Gronbech-Jensen, N.11
Poletto, S.12
-
20
-
-
77954126189
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.105.010501
-
N. Gronbech-Jensen, J. E. Marchese, M. Cirillo, and J. A. Blackburn, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.105.010501 105, 010501 (2010).
-
(2010)
Phys. Rev. Lett.
, vol.105
, pp. 010501
-
-
Gronbech-Jensen, N.1
Marchese, J.E.2
Cirillo, M.3
Blackburn, J.A.4
-
21
-
-
79961119852
-
-
Actually, in our numerical simulations, about "18" bound states will be involved in the nonlinear dynamics. We noticed that in Ref., about "60" states are involved in the dynamics, corresponding to a quasiclassical limit. While in the papers by Peano and Thorwart, where the nonlinear term of the potential is positive and, thus, can support an arbitrary number of bound states, only a few numbers of states (about "8") are involved in the dynamics, implying a "deep quantum regime." The term "mesoscopic" we used in our work basically means that the number of relevant (bound) states in the dynamics is in an intermediate range, i.e., between "a few" and "a large" number of states.
-
Actually, in our numerical simulations, about "18" bound states will be involved in the nonlinear dynamics. We noticed that in Ref., about "60" states are involved in the dynamics, corresponding to a quasiclassical limit. While in the papers by Peano and Thorwart, where the nonlinear term of the potential is positive and, thus, can support an arbitrary number of bound states, only a few numbers of states (about "8") are involved in the dynamics, implying a "deep quantum regime." The term "mesoscopic" we used in our work basically means that the number of relevant (bound) states in the dynamics is in an intermediate range, i.e., between "a few" and "a large" number of states.
-
-
-
-
22
-
-
79961103969
-
-
In this work, following Ref., we use the term "dynamic quantum tunneling" to describe the quantum transition between the metastable states in the bistable region. For a driven dynamic system, the phase space can have classically forbidden areas even in the absence of potential barriers. Quantum mechanically, however, these areas can be crossed in a process called dynamical tunneling (see and references therein). As a matter of fact, this is exactly the same process as studied in Ref., where the term "quantum activation" is employed, noting that it also describes the escape from a metastable state due to quantum fluctuations that lead to diffusion away from the metastable state and, ultimately, to transition over the classical "barrier", that is, the boundary of the basin of attraction to the metastable state.
-
In this work, following Ref., we use the term "dynamic quantum tunneling" to describe the quantum transition between the metastable states in the bistable region. For a driven dynamic system, the phase space can have classically forbidden areas even in the absence of potential barriers. Quantum mechanically, however, these areas can be crossed in a process called dynamical tunneling (see and references therein). As a matter of fact, this is exactly the same process as studied in Ref., where the term "quantum activation" is employed, noting that it also describes the escape from a metastable state due to quantum fluctuations that lead to diffusion away from the metastable state and, ultimately, to transition over the classical "barrier", that is, the boundary of the basin of attraction to the metastable state.
-
-
-
-
24
-
-
79961110888
-
-
EULEEJ 0295-5075 10.1209/0295-5075/90/10011
-
L. Z. Guo, Z. G. Zheng, and X. Q. Li, Europhys. Lett. EULEEJ 0295-5075 10.1209/0295-5075/90/10011 90, 10011 (2010).
-
(2010)
Europhys. Lett.
, vol.90
, pp. 10011
-
-
Guo, L.Z.1
Zheng, Z.G.2
Li, X.Q.3
-
26
-
-
0001030482
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.58.2721
-
Y. J. Yan, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.58.2721 58, 2721 (1998);
-
(1998)
Phys. Rev. A
, vol.58
, pp. 2721
-
-
Yan, Y.J.1
-
27
-
-
33846628195
-
Collective synchronization induced by epidemic dynamics on complex networks with communities
-
DOI 10.1103/PhysRevE.75.016108
-
R. X. Xu and Y. J. Yan, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.75.016108 75, 031107 (2007). (Pubitemid 46174723)
-
(2007)
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
, vol.75
, Issue.1
, pp. 016108
-
-
Yan, G.1
Fu, Z.-Q.2
Ren, J.3
Wang, W.-X.4
-
28
-
-
0000395714
-
-
PLRAAN 1098-0121 10.1103/PhysRevB.57.15400
-
A. Shnirman and G. Schön, Phys. Rev. B PLRAAN 1098-0121 10.1103/PhysRevB.57.15400 57, 15400 (1998);
-
(1998)
Phys. Rev. B
, vol.57
, pp. 15400
-
-
Shnirman, A.1
Schön, G.2
-
33
-
-
79961118203
-
-
That the SAS is an approximate coherent state can be understood as follows. For a dissipative harmonic oscillator described by a Lindblad master equation, e.g., a damping optical cavity under laser driving, the stationary state is exactly a coherent state. An elegant proof for this can be found in the Ref.. For the DDO problem, since the SAS is near the bottom of the potential well where the anharmonicity is negligible, we can then expect that the SAS is an approximate coherent state.
-
That the SAS is an approximate coherent state can be understood as follows. For a dissipative harmonic oscillator described by a Lindblad master equation, e.g., a damping optical cavity under laser driving, the stationary state is exactly a coherent state. An elegant proof for this can be found in the Ref.. For the DDO problem, since the SAS is near the bottom of the potential well where the anharmonicity is negligible, we can then expect that the SAS is an approximate coherent state.
-
-
-
-
35
-
-
19744378198
-
-
0031-9007 10.1103/PhysRevLett.93.207002
-
I. Siddiqi, R. Vijay, F. Pierre, C. M. Wilson, M. Metcalfe, C. Rigetti, L.A Frunzio, and M. H. Devoret, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett. 93.207002 93, 207002 (2004);
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 207002
-
-
Siddiqi, I.1
Vijay, R.2
Pierre, F.3
Wilson, C.M.4
Metcalfe, M.5
Rigetti, C.6
Frunzio, L.A.7
Devoret, M.H.8
-
36
-
-
84889849644
-
-
Springer Science + Business Media, Inc., New York
-
I. Siddiqi, R. Vijay, F. Pierre, C. M. Wilson, L. Frunzio, M. Metcalfe, C. Rigetti, and M. H. Devoret, Quantum Computing in Solid State Systems (Springer Science + Business Media, Inc., New York, 2006), p.A 28-36.
-
(2006)
Quantum Computing in Solid State Systems
, pp. 28-36
-
-
Siddiqi, I.1
Vijay, R.2
Pierre, F.3
Wilson, C.M.4
Frunzio, L.5
Metcalfe, M.6
Rigetti, C.7
Devoret, M.H.8
|