메뉴 건너뛰기




Volumn , Issue , 2009, Pages 852-857

New fusion architectures for performance enhancement of a PCA-based fault diagnosis and isolation system

Author keywords

[No Author keywords available]

Indexed keywords

BENCH-MARK PROBLEMS; CLASSIFIER FUSION; DIAGNOSTIC CAPABILITIES; EXTENSIVE SIMULATIONS; FAULT DIAGNOSIS AND ISOLATIONS; FAULT DIAGNOSTICS; FAULT FEATURE; FUSION ARCHITECTURE; K-NEAREST NEIGHBORS; PERFORMANCE ENHANCEMENTS; PROCESS PLANTS; TENNESSEE EASTMAN;

EID: 79960926532     PISSN: 14746670     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.3182/20090630-4-ES-2003.0306     Document Type: Conference Paper
Times cited : (3)

References (19)
  • 1
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C. K. C. (1998), A Tutorial on support vector machines for pattern recognition. Data mining and knowledge discovery, vol. 2, pp. 121-167
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 121-167
    • Burges, C.K.C.1
  • 2
    • 0034643075 scopus 로고    scopus 로고
    • Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis
    • DOI 10.1016/S0169-7439(99)00061-1, PII S0169743999000611
    • Chiang, L. H., E. L. Russell and R. D. Braatz (2000), Fault diagnosis in chemical processes using Fisher discriminant analysis, partial least squares, and principal component analysis, Chemometrics and Intelligent Laboratory Systems J., vol. 50, pp. 243-252. (Pubitemid 30136027)
    • (2000) Chemometrics and Intelligent Laboratory Systems , vol.50 , Issue.2 , pp. 243-252
    • Chiang, L.H.1    Russell, E.L.2    Braatz, R.D.3
  • 6
  • 7
    • 27944467534 scopus 로고    scopus 로고
    • Data fusion for fault diagnosis using multi-class support vector machines
    • Hui, H. Z., C. Y. Ze, L. Y. ui, X. X. Ming, (2005), Data fusion for fault diagnosis using multi-class Support Vector Machines. Journal of Zhejiang University SCIENCE. vol 6A (10), pp. 1030-1039.
    • (2005) Journal of Zhejiang University SCIENCE , vol.6 A , Issue.10 , pp. 1030-1039
    • Hui, H.Z.1    Ze, C.Y.2    Ui, L.Y.3    Ming, X.X.4
  • 8
    • 0034830461 scopus 로고    scopus 로고
    • Decision templates for multiple classifier fusion: an experimental comparison
    • DOI 10.1016/S0031-3203(99)00223-X
    • Kuncheva, L. I., J. C. Bezdek, R. P.W. Duin (2001), Decision Templates for Multiple Classifier Fusion: An Experimental Comparison. Pattern Recognition, vol. 34(2), pp. 299-314. (Pubitemid 32871876)
    • (2001) Pattern Recognition , vol.34 , Issue.2 , pp. 299-314
    • Kuncheva, L.I.1    Bezdek, J.C.2    Duin, R.P.W.3
  • 10
    • 0034661266 scopus 로고    scopus 로고
    • Nonlinear dynamic principal component analysis for on-line process monitoring and diagnosis
    • DOI 10.1016/S0098-1354(00)00433-6, PII S0098135400004336
    • Lin, W., Y. Qian and X. Li, (2000) "Nonlinear dynamic principal component analysis for on-line process monitoring and diagnosis," Computers & Chemical Engineering J., vol. 24, pp. 423-429 (Pubitemid 30608262)
    • (2000) Computers and Chemical Engineering , vol.24 , Issue.2-7 , pp. 423-429
    • Lin, W.1    Qian, Y.2    Li, X.3
  • 12
    • 0030127409 scopus 로고    scopus 로고
    • Statistical Process Monitoring and Disturbance Diagnosis in Multivariable Continuous Processes
    • Raich, A.C. and A. Cinar, (1996) "Statistical process monitoring and disturbance diagnosis in multivariable continuous processes," AIChE Journal, vol. 42, pp. 995-1009. (Pubitemid 126468139)
    • (1996) AIChE Journal , vol.42 , Issue.4 , pp. 995-1009
    • Raich, A.1    Cinar, A.2
  • 14
    • 0005946314 scopus 로고    scopus 로고
    • An overview of classifier fusion methods
    • Ruta D., B. Gabrys (2000), An Overview of Classifier Fusion Methods, Computing and Information Systems, 7(1), pp.1-10.
    • (2000) Computing and Information Systems , vol.7 , Issue.1 , pp. 1-10
    • Ruta, D.1    Gabrys, B.2
  • 15
    • 0033117452 scopus 로고    scopus 로고
    • Soft combination of neural classifiers: A comparative study
    • DOI 10.1016/S0167-8655(99)00012-4, PII S0167865599000124
    • Verikas A., A. Lipnickas, K. Malmqvist, M. Bacauskiene, and A. Gelzinis (1999). Soft combination of neural classifiers: A comparative study. Pattern Recognition Letters, 20:429-444. (Pubitemid 29377624)
    • (1999) Pattern Recognition Letters , vol.20 , Issue.4 , pp. 429-444
    • Verikas, A.1    Lipnickas, A.2    Malmqvist, K.3    Bacauskiene, M.4    Gelzinis, A.5
  • 17
    • 33744503185 scopus 로고    scopus 로고
    • Support vector machines based on K-means clustering for real-time business intelligence systems
    • DOI 10.1504/IJBIDM.2005.007318
    • Wang, J., X. Wu, C. Zhang (2005), Support vector machines based on K-means clustering for real-time business intelligent systems. Int. J. Business Intelligence and Data Mining, vol. 1, No.1, pp. 54-64 (Pubitemid 43796396)
    • (2005) International Journal of Business Intelligence and Data Mining , vol.1 , Issue.1 , pp. 54-64
    • Wang, J.1    Wu, X.2    Zhang, C.3
  • 18
    • 34249661124 scopus 로고    scopus 로고
    • Support vector machine in machine condition monitoring and fault diagnosis
    • DOI 10.1016/j.ymssp.2006.12.007, PII S0888327007000027
    • Widodo, A., B. S. Yang (2007), Support vector machine in machine condition monitoring and fault diagnosis, Mechanical Systems and fault diagnosis J., vol. 21, pp. 2560-2574. (Pubitemid 46829756)
    • (2007) Mechanical Systems and Signal Processing , vol.21 , Issue.6 , pp. 2560-2574
    • Widodo, A.1    Yang, B.-S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.