-
1
-
-
0000621802
-
Multi-variable functional interpolation and adaptive networks
-
[1] D.S. Broomhead, D. Lowe, Multi-variable functional interpolation and adaptive networks, Complex Systems 2 (1988) 269-303.
-
(1988)
Complex Systems
, vol.2
, pp. 269-303
-
-
Broomhead, D.S.1
Lowe, D.2
-
2
-
-
0003449524
-
-
Prentice-Hall, Englewood Cliffs, NJ
-
[2] M. Brown, C. Harris, Neurofuzzy Adaptive Modelling and Control, Prentice-Hall, Englewood Cliffs, NJ, 1994.
-
(1994)
Neurofuzzy Adaptive Modelling and Control
-
-
Brown, M.1
Harris, C.2
-
3
-
-
0026116468
-
Orthogonal least squares learning algorithm for radial basis function networks
-
[3] S. Chen, C.F.N. Cowan, P.M. Grant, Orthogonal least squares learning algorithm for radial basis function networks, IEEE Trans. Neural Networks 2 (2) (1991) 302-309.
-
(1991)
IEEE Trans. Neural Networks
, vol.2
, Issue.2
, pp. 302-309
-
-
Chen, S.1
Cowan, C.F.N.2
Grant, P.M.3
-
4
-
-
0010617063
-
Data approximation by splines in one and two independent variables
-
Oxford University Press, New York
-
[4] M.G. Cox, Data approximation by splines in one and two independent variables, The State of the Art in Numerical Analysis, IMA Conf. Ser., vol. 9, Oxford University Press, New York, 1987, pp. 111-138.
-
(1987)
The State of the Art in Numerical Analysis, IMA Conf. Ser.
, vol.9
, pp. 111-138
-
-
Cox, M.G.1
-
5
-
-
0024861871
-
Approximations by superpositions of a sigmoidal function
-
[5] G. Cybenko, Approximations by superpositions of a sigmoidal function, Math. Control Signals Systems 2 (4) (1989) 303-314.
-
(1989)
Math. Control Signals Systems
, vol.2
, Issue.4
, pp. 303-314
-
-
Cybenko, G.1
-
6
-
-
0024866495
-
On the approximate realization of continuous mappings by neural networks
-
[6] K. Funahashi, On the approximate realization of continuous mappings by neural networks, Neural Networks 2 (1989) 183-192.
-
(1989)
Neural Networks
, vol.2
, pp. 183-192
-
-
Funahashi, K.1
-
7
-
-
0003645482
-
-
Technical Report, Los Alamos National Laboratory, Los Alamos, New Mexico
-
[7] A. Lapedes, R. Farber, Nonlinear signal processing using neural networks: prediction and modelling, Technical Report, Los Alamos National Laboratory, Los Alamos, New Mexico, 1987.
-
(1987)
Nonlinear Signal Processing Using Neural Networks: Prediction and Modelling
-
-
Lapedes, A.1
Farber, R.2
-
8
-
-
0024945395
-
Adaptive radial basis function nonlinearities and the problem of generalization
-
London
-
[8] D. Lowe, Adaptive radial basis function nonlinearities and the problem of generalization, Proc. 1st IEE Int. Conf. on Artificial Neural Networks, London, 1989, pp. 171-175.
-
(1989)
Proc. 1st IEE Int. Conf. on Artificial Neural Networks
, pp. 171-175
-
-
Lowe, D.1
-
9
-
-
0026187058
-
Adaptive polynomial filters
-
[9] V.J. Mathews, Adaptive polynomial filters, IEEE Signal Process. Mag. 8 (3) (1991) 10-26.
-
(1991)
IEEE Signal Process. Mag.
, vol.8
, Issue.3
, pp. 10-26
-
-
Mathews, V.J.1
-
10
-
-
0025490985
-
Networks for approximation and learning
-
Sep.
-
[10] T. Poggio, F. Girosi, Networks for approximation and learning, Proc. IEEE 78 (9) (Sep. 1990) pp. 1481-1497.
-
(1990)
Proc. IEEE
, vol.78
, Issue.9
, pp. 1481-1497
-
-
Poggio, T.1
Girosi, F.2
-
11
-
-
0001355838
-
Radial basis functions for multivariable interpolation: A review
-
J.C. Mason, M.G. Cox (Eds.), Oxford
-
[11] M.J.D. Powell, Radial basis functions for multivariable interpolation: a review, in: J.C. Mason, M.G. Cox (Eds.), Algorithms for Approximation, Oxford, 1987, pp. 143-167.
-
(1987)
Algorithms for Approximation
, pp. 143-167
-
-
Powell, M.J.D.1
-
12
-
-
0000460775
-
Radial basis function approximations to polynomials
-
Dundee
-
[12] M.J.D. Powell, Radial basis function approximations to polynomials, Proc. 12th Biennial Numerical Analysis Conf., Dundee, 1987, pp. 223-241.
-
(1987)
Proc. 12th Biennial Numerical Analysis Conf.
, pp. 223-241
-
-
Powell, M.J.D.1
-
15
-
-
0010581076
-
-
M.Sc. Thesis, Imperial College, London
-
[15] A. Saranli, Investigation of an alternative B-spline basis in RBF networks, with applications to system identification and time-series prediction, M.Sc. Thesis, Imperial College, London, 1994.
-
(1994)
Investigation of An Alternative B-spline Basis in RBF Networks, with Applications to System Identification and Time-series Prediction
-
-
Saranli, A.1
|