메뉴 건너뛰기




Volumn 18, Issue 1-3, 1998, Pages 183-194

Complexity reduction in radial basis function (RBF) networks by using radial B-spline functions

Author keywords

B splines; Computational complexity; CORDIC; RBF

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; COMPUTATIONAL COMPLEXITY; COMPUTATIONAL METHODS; FUNCTIONS;

EID: 0031889404     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0925-2312(97)00078-7     Document Type: Article
Times cited : (25)

References (15)
  • 1
    • 0000621802 scopus 로고
    • Multi-variable functional interpolation and adaptive networks
    • [1] D.S. Broomhead, D. Lowe, Multi-variable functional interpolation and adaptive networks, Complex Systems 2 (1988) 269-303.
    • (1988) Complex Systems , vol.2 , pp. 269-303
    • Broomhead, D.S.1    Lowe, D.2
  • 3
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • [3] S. Chen, C.F.N. Cowan, P.M. Grant, Orthogonal least squares learning algorithm for radial basis function networks, IEEE Trans. Neural Networks 2 (2) (1991) 302-309.
    • (1991) IEEE Trans. Neural Networks , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 4
    • 0010617063 scopus 로고
    • Data approximation by splines in one and two independent variables
    • Oxford University Press, New York
    • [4] M.G. Cox, Data approximation by splines in one and two independent variables, The State of the Art in Numerical Analysis, IMA Conf. Ser., vol. 9, Oxford University Press, New York, 1987, pp. 111-138.
    • (1987) The State of the Art in Numerical Analysis, IMA Conf. Ser. , vol.9 , pp. 111-138
    • Cox, M.G.1
  • 5
    • 0024861871 scopus 로고
    • Approximations by superpositions of a sigmoidal function
    • [5] G. Cybenko, Approximations by superpositions of a sigmoidal function, Math. Control Signals Systems 2 (4) (1989) 303-314.
    • (1989) Math. Control Signals Systems , vol.2 , Issue.4 , pp. 303-314
    • Cybenko, G.1
  • 6
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • [6] K. Funahashi, On the approximate realization of continuous mappings by neural networks, Neural Networks 2 (1989) 183-192.
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.1
  • 8
    • 0024945395 scopus 로고
    • Adaptive radial basis function nonlinearities and the problem of generalization
    • London
    • [8] D. Lowe, Adaptive radial basis function nonlinearities and the problem of generalization, Proc. 1st IEE Int. Conf. on Artificial Neural Networks, London, 1989, pp. 171-175.
    • (1989) Proc. 1st IEE Int. Conf. on Artificial Neural Networks , pp. 171-175
    • Lowe, D.1
  • 9
    • 0026187058 scopus 로고
    • Adaptive polynomial filters
    • [9] V.J. Mathews, Adaptive polynomial filters, IEEE Signal Process. Mag. 8 (3) (1991) 10-26.
    • (1991) IEEE Signal Process. Mag. , vol.8 , Issue.3 , pp. 10-26
    • Mathews, V.J.1
  • 10
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Sep.
    • [10] T. Poggio, F. Girosi, Networks for approximation and learning, Proc. IEEE 78 (9) (Sep. 1990) pp. 1481-1497.
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 11
    • 0001355838 scopus 로고
    • Radial basis functions for multivariable interpolation: A review
    • J.C. Mason, M.G. Cox (Eds.), Oxford
    • [11] M.J.D. Powell, Radial basis functions for multivariable interpolation: a review, in: J.C. Mason, M.G. Cox (Eds.), Algorithms for Approximation, Oxford, 1987, pp. 143-167.
    • (1987) Algorithms for Approximation , pp. 143-167
    • Powell, M.J.D.1
  • 12


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.