메뉴 건너뛰기




Volumn 50, Issue 15, 2011, Pages 9236-9248

Nonlinear modeling method applied to prediction of hot metal silicon in the ironmaking blast furnace

Author keywords

[No Author keywords available]

Indexed keywords

BLACK-BOX MODELING; COMPLEX MODELING; ESTIMATION ERRORS; EXHAUSTIVE SEARCH; HIDDEN NODES; HOT METAL; INPUT VARIABLES; IRONMAKING BLAST FURNACE; LARGE NETWORKS; LOCAL MINIMUMS; METALLURGICAL INDUSTRY; MIXED INTEGER LINEAR PROGRAMMING; MODELING METHOD; MULTI LAYER PERCEPTRON; NETWORK COMPLEXITY; NETWORK CONFIGURATION; NEURAL MODELS; NEURAL NETWORK MODEL; NONLINEAR MODELING; PARETO-FRONTIER; POTENTIAL MODEL; PRUNING METHODS; SILICON CONTENTS; SYSTEMATIC METHOD; TEST EXAMPLES; VERSATILE TOOLS;

EID: 79960873707     PISSN: 08885885     EISSN: 15205045     Source Type: Journal    
DOI: 10.1021/ie200274q     Document Type: Article
Times cited : (50)

References (39)
  • 3
    • 0000783575 scopus 로고
    • The Upstart Algorithm. A Method for Constructing and Training Feed-forward Neural Networks
    • Frean, M. The Upstart Algorithm. A Method for Constructing and Training Feed-forward Neural Networks Neural Comput. 1991, 2, 198
    • (1991) Neural Comput. , vol.2 , pp. 198
    • Frean, M.1
  • 6
    • 0026221027 scopus 로고
    • An Information Criterion for Optimal Neural Network Selection
    • Fogel, D. B. An Information Criterion for Optimal Neural Network Selection IEEE Trans. Neural Networks 1991, 2, 490
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 490
    • Fogel, D.B.1
  • 7
  • 8
    • 0035505658 scopus 로고    scopus 로고
    • A new pruning heuristic based on variance analysis of sensitivity information
    • Engelbrecht, A. P. A new pruning heuristic based on variance analysis of sensitivity information IEEE Trans. Neural Networks 2001, 2, 1386
    • (2001) IEEE Trans. Neural Networks , vol.2 , pp. 1386
    • Engelbrecht, A.P.1
  • 9
    • 55849084307 scopus 로고    scopus 로고
    • Pruning artificial neural networks using neural complexity measures
    • Jorgensen, T. D.; Haynes, B. P.; Norlund, C. C. F. Pruning artificial neural networks using neural complexity measures Int. J. Neural Syst. 2008, 18, 389
    • (2008) Int. J. Neural Syst. , vol.18 , pp. 389
    • Jorgensen, T.D.1    Haynes, B.P.2    Norlund, C.C.F.3
  • 11
    • 0028336556 scopus 로고
    • Genetic Evolution of the Topology and Weight Distribution of Neural Networks
    • Maniezzo, V. Genetic Evolution of the Topology and Weight Distribution of Neural Networks IEEE Trans. Neural Networks 1994, 5, 39
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 39
    • Maniezzo, V.1
  • 12
    • 0033229785 scopus 로고    scopus 로고
    • Genetic Algorithms and Evolutionary Programming Hybrid Strategy for Structure and Weight Learning for Multilayer Feedforward Neural Networks
    • Gao, F.; Li, M.; Wang, F.; Wang, B.; Yue, P. Genetic Algorithms and Evolutionary Programming Hybrid Strategy for Structure and Weight Learning for Multilayer Feedforward Neural Networks Ind. Eng. Chem. Res. 1999, 38, 4330
    • (1999) Ind. Eng. Chem. Res. , vol.38 , pp. 4330
    • Gao, F.1    Li, M.2    Wang, F.3    Wang, B.4    Yue, P.5
  • 13
    • 0038178389 scopus 로고    scopus 로고
    • Modeling of the blast furnace burden distribution by evolving neural networks
    • Hinnelä, J.; Saxén, H.; Pettersson, F. Modeling of the blast furnace burden distribution by evolving neural networks Ind. Eng. Chem. Res. 2003, 42, 2314
    • (2003) Ind. Eng. Chem. Res. , vol.42 , pp. 2314
    • Hinnelä, J.1    Saxén, H.2    Pettersson, F.3
  • 14
    • 77955314142 scopus 로고    scopus 로고
    • Constructive training of recurrent neural networks using hybrid optimization
    • Subrahmanya, N.; Shin, Y. C. Constructive training of recurrent neural networks using hybrid optimization Neurocomput. 2010, 73, 2624
    • (2010) Neurocomput. , vol.73 , pp. 2624
    • Subrahmanya, N.1    Shin, Y.C.2
  • 15
    • 0024861871 scopus 로고
    • Approximations by superpositions of sigmoidal function
    • Cybenko, G. Approximations by superpositions of sigmoidal function Math. Control, Signals Syst. 1989, 2, 303
    • (1989) Math. Control, Signals Syst. , vol.2 , pp. 303
    • Cybenko, G.1
  • 16
    • 33646179808 scopus 로고    scopus 로고
    • Method for the selection of inputs and structure of feedforward neural networks
    • Saxén, H.; Pettersson, F. Method for the selection of inputs and structure of feedforward neural networks Comput. Chem. Eng. 2006, 30, 1038
    • (2006) Comput. Chem. Eng. , vol.30 , pp. 1038
    • Saxén, H.1    Pettersson, F.2
  • 17
    • 39149117356 scopus 로고    scopus 로고
    • Nonlinear Prediction of the Hot Metal Silicon Content in the Blast Furnace
    • Saxén, H.; Pettersson, F. Nonlinear Prediction of the Hot Metal Silicon Content in the Blast Furnace ISIJ Int. 2007, 47, 1732
    • (2007) ISIJ Int. , vol.47 , pp. 1732
    • Saxén, H.1    Pettersson, F.2
  • 21
    • 0016342906 scopus 로고
    • Identification of multiinput-multioutput transfer function and noise model of a blast furnace from closed-loop data
    • Phadke, M. S.; Wu, S. M. Identification of multiinput-multioutput transfer function and noise model of a blast furnace from closed-loop data IEEE Trans. Autom. Control 1974, 19, 944
    • (1974) IEEE Trans. Autom. Control , vol.19 , pp. 944
    • Phadke, M.S.1    Wu, S.M.2
  • 23
    • 0043085968 scopus 로고
    • The adaptive autoregressive models for the system dynamics and prediction of blast-furnace
    • Chao, Y. C.; Su, C. W.; Huang, H. P. The adaptive autoregressive models for the system dynamics and prediction of blast-furnace Chem. Eng. Commun. 1986, 44, 309
    • (1986) Chem. Eng. Commun. , vol.44 , pp. 309
    • Chao, Y.C.1    Su, C.W.2    Huang, H.P.3
  • 24
    • 0028526798 scopus 로고
    • Short-term prediction of silicon content in pig iron
    • Saxén, H. Short-term prediction of silicon content in pig iron Can. Met. Quart. 1994, 33, 319
    • (1994) Can. Met. Quart. , vol.33 , pp. 319
    • Saxén, H.1
  • 25
    • 0030570061 scopus 로고    scopus 로고
    • VARMAX-modelling of blast furnace process variables
    • Östermark, R.; Saxén, H. VARMAX-modelling of blast furnace process variables Eur. J. Oper. Res. 1996, 90, 85
    • (1996) Eur. J. Oper. Res. , vol.90 , pp. 85
    • Östermark, R.1    Saxén, H.2
  • 26
    • 0042128687 scopus 로고    scopus 로고
    • State realization with exogenous variables - A test on blast furnace data
    • Saxén, H.; Östermark, R. State realization with exogenous variables-A test on blast furnace data Eur. J. Oper. Res. 1996, 89, 34
    • (1996) Eur. J. Oper. Res. , vol.89 , pp. 34
    • Saxén, H.1    Östermark, R.2
  • 27
    • 0342668511 scopus 로고    scopus 로고
    • A Neural Network Model for Predicting the Silicon Content of the Hot Metal at No.2 Blast Furnace of SSAB Luleå
    • ISS: Warrendale, PA
    • Zuo, G.; Ma, J.; Björkman, B. A Neural Network Model for Predicting the Silicon Content of the Hot Metal at No.2 Blast Furnace of SSAB Luleå. In Proceedings Ironmaking Conference; ISS: Warrendale, PA, 1996; p 211.
    • (1996) Proceedings Ironmaking Conference , pp. 211
    • Zuo, G.1    Ma, J.2    Björkman, B.3
  • 28
    • 0036269935 scopus 로고    scopus 로고
    • Application of nonlinear time series analysis to the prediction of silicon content of pig iron
    • Waller, M.; Saxén, H. Application of nonlinear time series analysis to the prediction of silicon content of pig iron ISIJ Int. 2002, 42, 316
    • (2002) ISIJ Int. , vol.42 , pp. 316
    • Waller, M.1    Saxén, H.2
  • 29
    • 59649118425 scopus 로고    scopus 로고
    • Application of least squares support vector machines to predict the silicon content in blast furnace hot metal
    • Jian, L.; Gao, C. H.; Li, L.; Zeng, J. Application of least squares support vector machines to predict the silicon content in blast furnace hot metal ISIJ Int. 2008, 48, 1659
    • (2008) ISIJ Int. , vol.48 , pp. 1659
    • Jian, L.1    Gao, C.H.2    Li, L.3    Zeng, J.4
  • 30
    • 60649087757 scopus 로고    scopus 로고
    • Wiener model identification of blast furnace ironmaking process
    • Zeng, J. S.; Liu, X. G.; Gao, C. H.; Luo, S. H.; Jian, L. Wiener model identification of blast furnace ironmaking process ISIJ Int. 2008, 48, 1734
    • (2008) ISIJ Int. , vol.48 , pp. 1734
    • Zeng, J.S.1    Liu, X.G.2    Gao, C.H.3    Luo, S.H.4    Jian, L.5
  • 31
    • 27744595773 scopus 로고    scopus 로고
    • Time-dependent fractal characteristics on time series of silicon content in hot metal of blast furnace
    • Gao, C. H.; Qian, J. X. Time-dependent fractal characteristics on time series of silicon content in hot metal of blast furnace ISIJ Int. 2005, 45, 1269
    • (2005) ISIJ Int. , vol.45 , pp. 1269
    • Gao, C.H.1    Qian, J.X.2
  • 32
    • 27844517807 scopus 로고    scopus 로고
    • Chaotic identification and prediction of silicon content hot metal
    • Gao, C. H.; Zhou, Z. M.; Qian, J. X. Chaotic identification and prediction of silicon content hot metal J. Iron Steel Res. Int. 2005, 12, 3
    • (2005) J. Iron Steel Res. Int. , vol.12 , pp. 3
    • Gao, C.H.1    Zhou, Z.M.2    Qian, J.X.3
  • 33
    • 35348918727 scopus 로고    scopus 로고
    • Identification of multi-fractal characteristics of silicon content in blast furnace hot metal
    • Luo, S. H.; Liu, X. G.; Zeng, J. S. Identification of multi-fractal characteristics of silicon content in blast furnace hot metal ISIJ Int. 2007, 47, 1102
    • (2007) ISIJ Int. , vol.47 , pp. 1102
    • Luo, S.H.1    Liu, X.G.2    Zeng, J.S.3
  • 34
    • 65349142587 scopus 로고    scopus 로고
    • A chaos-based iterated multistep predictor for blast furnace ironmaking process
    • Gao, C. H.; Chen, J.; Zeng, J.; Liu, X.; Sun, X. A chaos-based iterated multistep predictor for blast furnace ironmaking process AIChE J. 2009, 55, 247
    • (2009) AIChE J. , vol.55 , pp. 247
    • Gao, C.H.1    Chen, J.2    Zeng, J.3    Liu, X.4    Sun, X.5
  • 35
    • 77956874637 scopus 로고    scopus 로고
    • Data-driven predictive control for blast furnace ironmaking process
    • Zeng, J. S.; Gao, C. H.; Su, H. Y. Data-driven predictive control for blast furnace ironmaking process Comput. Chem. Eng. 2010, 34, 1854
    • (2010) Comput. Chem. Eng. , vol.34 , pp. 1854
    • Zeng, J.S.1    Gao, C.H.2    Su, H.Y.3
  • 36
    • 77956195584 scopus 로고    scopus 로고
    • Prediction and control for silicon content in pig iron of blast furnace by integrating artificial neural network with genetic algorithm
    • Chen, W.; Wang, B. X.; Han, H. L. Prediction and control for silicon content in pig iron of blast furnace by integrating artificial neural network with genetic algorithm Ironmaking Steelmaking 2009, 37, 458
    • (2009) Ironmaking Steelmaking , vol.37 , pp. 458
    • Chen, W.1    Wang, B.X.2    Han, H.L.3
  • 37
    • 0034038455 scopus 로고    scopus 로고
    • On the development of predictive models with applications to a metallurgical process
    • Waller, M.; Saxén, H. On the development of predictive models with applications to a metallurgical process Ind. Eng. Chem. Res. 2000, 39, 982
    • (2000) Ind. Eng. Chem. Res. , vol.39 , pp. 982
    • Waller, M.1    Saxén, H.2
  • 38
    • 33244454512 scopus 로고    scopus 로고
    • Prediction of silicon content in blast furnace hot metal using partial least squares (PLS)
    • Bhattacharaya, T. Prediction of silicon content in blast furnace hot metal using partial least squares (PLS) ISIJ Int. 2005, 45, 1943
    • (2005) ISIJ Int. , vol.45 , pp. 1943
    • Bhattacharaya, T.1
  • 39
    • 34249884281 scopus 로고    scopus 로고
    • Evolving Nonlinear Time-Series Models of the Hot Metal Silicon Content in the Blast Furnace
    • Saxén, H.; Pettersson, F.; Gunturu, K. Evolving Nonlinear Time-Series Models of the Hot Metal Silicon Content in the Blast Furnace Mater. Manuf. Proc. 2007, 22, 577
    • (2007) Mater. Manuf. Proc. , vol.22 , pp. 577
    • Saxén, H.1    Pettersson, F.2    Gunturu, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.