메뉴 건너뛰기




Volumn 17, Issue 8, 2011, Pages 1604-1613

Intron cleavage affects processing of alternatively spliced transcripts

Author keywords

Alternative splicing; Cotranscriptional processing; Microprocessor target sequence; Ribozymes

Indexed keywords

FIBRONECTIN; HAMMERHEAD RIBOZYME; HEPATITIS DELTA ANTIGEN; MESSENGER RNA; RIBOZYME;

EID: 79960453205     PISSN: 13558382     EISSN: 14699001     Source Type: Journal    
DOI: 10.1261/rna.2514811     Document Type: Article
Times cited : (5)

References (43)
  • 2
    • 46149111652 scopus 로고    scopus 로고
    • Influence of Friedreich ataxia GAA noncoding repeat expansions on pre-mRNA processing
    • Baralle M, Pastor T, Bussani E, Pagani F. 2008. Influence of Friedreich ataxia GAA noncoding repeat expansions on pre-mRNA processing. Am J Hum Genet 83: 77-88.
    • (2008) Am J Hum Genet , vol.83 , pp. 77-88
    • Baralle, M.1    Pastor, T.2    Bussani, E.3    Pagani, F.4
  • 3
    • 0024021747 scopus 로고
    • Splice site selection, rate of splicing, and alternative splicing on nascent transcripts
    • Beyer AL, Osheim YN. 1988. Splice site selection, rate of splicing, and alternative splicing on nascent transcripts. Genes Dev 2: 754-765.
    • (1988) Genes Dev , vol.2 , pp. 754-765
    • Beyer, A.L.1    Osheim, Y.N.2
  • 4
    • 0019851631 scopus 로고
    • Correlation of hnRNP structure and nascent transcript cleavage
    • Beyer AL, Bouton AH, Miller OL Jr. 1981. Correlation of hnRNP structure and nascent transcript cleavage. Cell 26: 155-165. (Pubitemid 12244495)
    • (1981) Cell , vol.26 , Issue.2 , pp. 155-165
    • Beyer, A.L.1    Bouton, A.H.2    Miller Jr., O.L.3
  • 5
    • 70350107527 scopus 로고    scopus 로고
    • Direct selection for ribozyme cleavage activity in cells
    • Chen X, Denison L, Levy M, Ellington AD. 2009. Direct selection for ribozyme cleavage activity in cells. RNA 15: 2035-2045.
    • (2009) RNA , vol.15 , pp. 2035-2045
    • Chen, X.1    Denison, L.2    Levy, M.3    Ellington, A.D.4
  • 6
    • 33745132168 scopus 로고    scopus 로고
    • Functional coupling of RNAP II transcription to spliceosome assembly
    • Das R, Dufu K, Romney B, Feldt M, Elenko M, Reed R. 2006. Functional coupling of RNAP II transcription to spliceosome assembly. Genes Dev 20: 1100-1109.
    • (2006) Genes Dev , vol.20 , pp. 1100-1109
    • Das, R.1    Dufu, K.2    Romney, B.3    Feldt, M.4    Elenko, M.5    Reed, R.6
  • 7
    • 34250363024 scopus 로고    scopus 로고
    • SR Proteins Function in Coupling RNAP II Transcription to Pre-mRNA Splicing
    • DOI 10.1016/j.molcel.2007.05.036, PII S1097276507003607
    • Das R, Yu J, Zhang Z, Gygi MP, Krainer AR, Gygi SP, Reed R. 2007. SR proteins function in coupling RNAP II transcription to premRNA splicing. Mol Cell 26: 867-881. (Pubitemid 46921010)
    • (2007) Molecular Cell , vol.26 , Issue.6 , pp. 867-881
    • Das, R.1    Yu, J.2    Zhang, Z.3    Gygi, M.P.4    Krainer, A.R.5    Gygi, S.P.6    Reed, R.7
  • 8
    • 77951200179 scopus 로고    scopus 로고
    • First come, first served revisited: Factors affecting the same alternative splicing event have different effects on the relative rates of intron removal
    • de la Mata M, Lafaille C, Kornblihtt AR. 2010. First come, first served revisited: Factors affecting the same alternative splicing event have different effects on the relative rates of intron removal. RNA 16: 904-912.
    • (2010) RNA , vol.16 , pp. 904-912
    • De La Mata, M.1    Lafaille, C.2    Kornblihtt, A.R.3
  • 9
    • 9144224451 scopus 로고    scopus 로고
    • Processing of primary microRNAs by the Microprocessor complex
    • DOI 10.1038/nature03049
    • Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. 2004. Processing of primary microRNAs by the Microprocessor complex. Nature 432: 231-235. (Pubitemid 39545854)
    • (2004) Nature , vol.432 , Issue.7014 , pp. 231-235
    • Denli, A.M.1    Tops, B.B.J.2    Plasterk, R.H.A.3    Ketting, R.F.4    Hannon, G.J.5
  • 10
    • 33644856084 scopus 로고    scopus 로고
    • Exon tethering in transcription by RNA polymerase II
    • DOI 10.1016/j.molcel.2006.01.032, PII S1097276506000803
    • Dye MJ, Gromak N, Proudfoot NJ. 2006. Exon tethering in transcription by RNA polymerase II. Mol Cell 21: 849-859. (Pubitemid 43376134)
    • (2006) Molecular Cell , vol.21 , Issue.6 , pp. 849-859
    • Dye, M.J.1    Gromak, N.2    Proudfoot, N.J.3
  • 11
    • 69949177617 scopus 로고    scopus 로고
    • Fast ribozyme cleavage releases transcripts from RNA polymerase II and aborts co-transcriptional pre-mRNA processing
    • Fong N, Ohman M, Bentley DL. 2009. Fast ribozyme cleavage releases transcripts from RNA polymerase II and aborts co-transcriptional pre-mRNA processing. Nat Struct Mol Biol 16: 916-922.
    • (2009) Nat Struct Mol Biol , vol.16 , pp. 916-922
    • Fong, N.1    Ohman, M.2    Bentley, D.L.3
  • 12
    • 44349135730 scopus 로고    scopus 로고
    • Binding of DAZAP1 and hnRNPA1/A2 to an exonic splicing silencer in a natural BRCA1 exon 18 mutant
    • DOI 10.1128/MCB.02253-07
    • Goina E, Skoko N, Pagani F. 2008. Binding of DAZAP1 and hnRNPA1/A2 to an exonic splicing silencer in a natural BRCA1 exon 18 mutant. Mol Cell Biol 28: 3850-3860. (Pubitemid 351732917)
    • (2008) Molecular and Cellular Biology , vol.28 , Issue.11 , pp. 3850-3860
    • Goina, E.1    Skoko, N.2    Pagani, F.3
  • 13
    • 21244493903 scopus 로고    scopus 로고
    • Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex
    • DOI 10.1016/j.molcel.2005.05.007, PII S1097276505013134
    • Gornemann J, Kotovic KM, Hujer K, Neugebauer KM. 2005. Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex. Mol Cell 19: 53-63. (Pubitemid 40884657)
    • (2005) Molecular Cell , vol.19 , Issue.1 , pp. 53-63
    • Gornemann, J.1    Kotovic, K.M.2    Hujer, K.3    Neugebauer, K.M.4
  • 14
    • 38649091655 scopus 로고    scopus 로고
    • Modulating alternative splicing by cotranscriptional cleavage of nascent intronic RNA
    • DOI 10.1261/rna.615508
    • Gromak N, Talotti G, Proudfoot NJ, Pagani F. 2008. Modulating alternative splicing by cotranscriptional cleavage of nascent intronic RNA. RNA 14: 359-366. (Pubitemid 351171595)
    • (2008) RNA , vol.14 , Issue.2 , pp. 359-366
    • Gromak, N.1    Talotti, G.2    Proudfoot, N.J.3    Pagani, F.4
  • 15
    • 34447115822 scopus 로고    scopus 로고
    • The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a
    • DOI 10.1038/nsmb1250, PII NSMB1250
    • Guil S, Caceres JF. 2007. The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nat Struct Mol Biol 14: 591-596. (Pubitemid 47037061)
    • (2007) Nature Structural and Molecular Biology , vol.14 , Issue.7 , pp. 591-596
    • Guil, S.1    Caceres, J.F.2
  • 16
    • 33744520104 scopus 로고    scopus 로고
    • Molecular Basis for the Recognition of Primary microRNAs by the Drosha-DGCR8 Complex
    • DOI 10.1016/j.cell.2006.03.043, PII S0092867406005162
    • Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, Sohn SY, Cho Y, Zhang BT, Kim VN. 2006. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125: 887-901. (Pubitemid 43810154)
    • (2006) Cell , vol.125 , Issue.5 , pp. 887-901
    • Han, J.1    Lee, Y.2    Yeom, K.-H.3    Nam, J.-W.4    Heo, I.5    Rhee, J.-K.6    Sohn, S.Y.7    Cho, Y.8    Zhang, B.-T.9    Kim, V.N.10
  • 18
    • 33745220323 scopus 로고    scopus 로고
    • Linking splicing to Pol II transcription stabilizes pre-mRNAs and influences splicing patterns
    • doi: 10.1371/journal.pbio.0040147
    • Hicks MJ, Yang CR, Kotlajich MV, Hertel KJ. 2006. Linking splicing to Pol II transcription stabilizes pre-mRNAs and influences splicing patterns. PLoS Biol 4: e147. doi: 10.1371/journal.pbio.0040147.
    • (2006) PLoS Biol , vol.4
    • Hicks, M.J.1    Yang, C.R.2    Kotlajich, M.V.3    Hertel, K.J.4
  • 19
    • 33846945735 scopus 로고    scopus 로고
    • Processing of intronic microRNAs
    • Kim YK, Kim VN. 2007. Processing of intronic microRNAs. EMBO J 26: 775-783.
    • (2007) EMBO J , vol.26 , pp. 775-783
    • Kim, Y.K.1    Kim, V.N.2
  • 20
    • 19344363974 scopus 로고    scopus 로고
    • Promoter usage and alternative splicing
    • DOI 10.1016/j.ceb.2005.04.014, PII S0955067405000566, Nucleus and Gene Expression
    • Kornblihtt AR. 2005. Promoter usage and alternative splicing. Curr Opin Cell Biol 17: 262-268. (Pubitemid 40719915)
    • (2005) Current Opinion in Cell Biology , vol.17 , Issue.3 , pp. 262-268
    • Kornblihtt, A.R.1
  • 21
    • 42449089029 scopus 로고    scopus 로고
    • Coupling transcription and alternative splicing
    • Kornblihtt AR. 2007. Coupling transcription and alternative splicing. Adv Exp Med Biol 623: 175-189.
    • (2007) Adv Exp Med Biol , vol.623 , pp. 175-189
    • Kornblihtt, A.R.1
  • 22
    • 33746630487 scopus 로고    scopus 로고
    • In vivo commitment to yeast cotranscriptional splicing is sensitive to transcription elongation mutants
    • Lacadie SA, Tardiff DF, Kadener S, Rosbash M. 2006. In vivo commitment to yeast cotranscriptional splicing is sensitive to transcription elongation mutants. Genes Dev 20: 2055-2066.
    • (2006) Genes Dev , vol.20 , pp. 2055-2066
    • Lacadie, S.A.1    Tardiff, D.F.2    Kadener, S.3    Rosbash, M.4
  • 23
    • 33748351186 scopus 로고    scopus 로고
    • Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells
    • DOI 10.1038/nsmb1135, PII NSMB1135
    • Listerman I, Sapra AK, Neugebauer KM. 2006. Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells. Nat Struct Mol Biol 13: 815-822. (Pubitemid 44338776)
    • (2006) Nature Structural and Molecular Biology , vol.13 , Issue.9 , pp. 815-822
    • Listerman, I.1    Sapra, A.K.2    Neugebauer, K.M.3
  • 25
    • 0037041395 scopus 로고    scopus 로고
    • An extensive network of coupling among gene expression machines
    • DOI 10.1038/416499a
    • Maniatis T, Reed R. 2002. An extensive network of coupling among gene expression machines. Nature 416: 499-506. (Pubitemid 34288845)
    • (2002) Nature , vol.416 , Issue.6880 , pp. 499-506
    • Maniatis, T.1    Reed, R.2
  • 27
    • 0033153543 scopus 로고    scopus 로고
    • RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo
    • DOI 10.1016/S1097-2765(01)80002-2
    • Misteli T, Spector DL. 1999. RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo. Mol Cell 3: 697-705. (Pubitemid 29323048)
    • (1999) Molecular Cell , vol.3 , Issue.6 , pp. 697-705
    • Misteli, T.1    Spector, D.L.2
  • 29
    • 0034704145 scopus 로고    scopus 로고
    • The splicing factor, Prp40, binds the phosphorylated carboxyl-terminal domain of RNA Polymerase II
    • DOI 10.1074/jbc.M004118200
    • Morris DP, Greenleaf AL. 2000. The splicing factor, Prp40, binds the phosphorylated carboxyl-terminal domain of RNA polymerase II. J Biol Chem 275: 39935-39943. (Pubitemid 32064615)
    • (2000) Journal of Biological Chemistry , vol.275 , Issue.51 , pp. 39935-39943
    • Morris, D.P.1    Greenleaf, A.L.2
  • 30
    • 64749097017 scopus 로고    scopus 로고
    • The carboxyl-terminal domain of RNA polymerase II is not sufficient to enhance the efficiency of pre-mRNA capping or splicing in the context of a different polymerase
    • Natalizio BJ, Robson-Dixon ND, Garcia-Blanco MA. 2009. The carboxyl-terminal domain of RNA polymerase II is not sufficient to enhance the efficiency of pre-mRNA capping or splicing in the context of a different polymerase. J Biol Chem 284: 8692-8702.
    • (2009) J Biol Chem , vol.284 , pp. 8692-8702
    • Natalizio, B.J.1    Robson-Dixon, N.D.2    Garcia-Blanco, M.A.3
  • 31
    • 0037899998 scopus 로고    scopus 로고
    • New type of disease causing mutations: The example of the composite exonic regulatory elements of splicing in CFTR exon 12
    • DOI 10.1093/hmg/ddg131
    • Pagani F, Stuani C, Tzetis M, Kanavakis E, Efthymiadou A, Doudounakis S, Casals T, Baralle FE. 2003. New type of disease causing mutations: the example of the composite exonic regulatory elements of splicing in CFTR exon 12. Hum Mol Genet 12: 1111-1120. (Pubitemid 36622143)
    • (2003) Human Molecular Genetics , vol.12 , Issue.10 , pp. 1111-1120
    • Pagani, F.1    Stuani, C.2    Tzetis, M.3    Kanavakis, E.4    Efthymiadou, A.5    Doudounakis, S.6    Casals, T.7    Baralle, F.E.8
  • 32
    • 56749098074 scopus 로고    scopus 로고
    • Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing
    • Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. 2008. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40: 1413-1415.
    • (2008) Nat Genet , vol.40 , pp. 1413-1415
    • Pan, Q.1    Shai, O.2    Lee, L.J.3    Frey, B.J.4    Blencowe, B.J.5
  • 33
    • 70349125488 scopus 로고    scopus 로고
    • Co-transcriptional splicing of constitutive and alternative exons
    • Pandya-Jones A, Black DL. 2009. Co-transcriptional splicing of constitutive and alternative exons. RNA 15: 1896-1908.
    • (2009) RNA , vol.15 , pp. 1896-1908
    • Pandya-Jones, A.1    Black, D.L.2
  • 34
    • 47549105524 scopus 로고    scopus 로고
    • Primary microRNA transcript retention at sites of transcription leads to enhanced microRNA production
    • DOI 10.1083/jcb.200803111
    • Pawlicki JM, Steitz JA. 2008. Primary microRNA transcript retention at sites of transcription leads to enhanced microRNA production. J Cell Biol 182: 61-76. (Pubitemid 352008622)
    • (2008) Journal of Cell Biology , vol.182 , Issue.1 , pp. 61-76
    • Pawlicki, J.M.1    Steitz, J.A.2
  • 35
  • 36
    • 77957792654 scopus 로고    scopus 로고
    • Exon junction complex subunits are required to splice Drosophila MAP kinase, a large heterochromatic gene
    • Roignant JY, Treisman JE. 2010. Exon junction complex subunits are required to splice Drosophila MAP kinase, a large heterochromatic gene. Cell 143: 238-250.
    • (2010) Cell , vol.143 , pp. 238-250
    • Roignant, J.Y.1    Treisman, J.E.2
  • 38
    • 70349187028 scopus 로고    scopus 로고
    • Genomic analysis suggests that mRNA destabilization by the Microprocessor is specialized for the auto-regulation of Dgcr8
    • doi: 10.1371/journal.pone.0006971
    • Shenoy A, Blelloch R. 2009. Genomic analysis suggests that mRNA destabilization by the Microprocessor is specialized for the auto-regulation of Dgcr8. PLoS ONE 4: e6971. doi: 10.1371/journal.pone.0006971.
    • (2009) PLoS ONE , vol.4
    • Shenoy, A.1    Blelloch, R.2
  • 40
    • 66449118741 scopus 로고    scopus 로고
    • Post-transcriptional control of DGCR8 expression by the Microprocessor
    • Triboulet R, Chang HM, Lapierre RJ, Gregory RI. 2009. Post-transcriptional control of DGCR8 expression by the Microprocessor. RNA 15: 1005-1011.
    • (2009) RNA , vol.15 , pp. 1005-1011
    • Triboulet, R.1    Chang, H.M.2    Lapierre, R.J.3    Gregory, R.I.4
  • 41
    • 40849108663 scopus 로고    scopus 로고
    • Selective blockade of microRNA processing by Lin28
    • DOI 10.1126/science.1154040
    • Viswanathan SR, Daley GQ, Gregory RI. 2008. Selective blockade of microRNA processing by Lin28. Science 320: 97-100. (Pubitemid 351490762)
    • (2008) Science , vol.320 , Issue.5872 , pp. 97-100
    • Viswanathan, S.R.1    Daley, G.Q.2    Gregory, R.I.3
  • 43
    • 4644275337 scopus 로고    scopus 로고
    • Exogenous control of mammalian gene expression through modulation of RNA self-cleavage
    • DOI 10.1038/nature02844
    • Yen L, Svendsen J, Lee JS, Gray JT, Magnier M, Baba T, D'Amato RJ, Mulligan RC. 2004. Exogenous control of mammalian gene expression through modulation of RNA self-cleavage. Nature 431: 471-476. (Pubitemid 39329588)
    • (2004) Nature , vol.431 , Issue.7007 , pp. 471-476
    • Yen, L.1    Svendsen, J.2    Lee, J.-S.3    Gray, J.T.4    Magnier, M.5    Baba, T.6    D'Amato, R.J.7    Mulligan, R.C.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.