-
1
-
-
0001317699
-
A New Way of Using Semidefinite Programming with Applications to Linear Equations mod p
-
DOI 10.1006/jagm.2000.1154
-
G. Andersson, L. Engebretsen, and J. Håstad, A new way of using semidefinite programming with applications to linear equations mod p, J. Algorithms, 39 (2001), pp. 162-204. (Pubitemid 33668348)
-
(2001)
Journal of Algorithms
, vol.39
, Issue.2
, pp. 162-204
-
-
Andersson, G.1
Engebretsen, L.2
Hastad, J.3
-
2
-
-
77952280579
-
Towards sharp inapproximability for any 2-CSP
-
P. Austrin, Towards sharp inapproximability for any 2-CSP, SIAM J. Comput., 39 (2010), pp. 2430-2463.
-
(2010)
SIAM J. Comput.
, vol.39
, pp. 2430-2463
-
-
Austrin, P.1
-
3
-
-
79952948997
-
Randomly supported independence and resistance
-
P. Austrin and J. Håstad, Randomly supported independence and resistance, SIAM J. Comput., 40 (2011), pp. 1-27.
-
(2011)
SIAM J. Comput.
, vol.40
, pp. 1-27
-
-
Austrin, P.1
Håstad, J.2
-
4
-
-
68149178817
-
Approximation resistant predicates from pairwise independence
-
P. Austrin and E. Mossel, Approximation resistant predicates from pairwise independence, Comput. Complexity, 18 (2009), pp. 249-271.
-
(2009)
Comput. Complexity
, vol.18
, pp. 249-271
-
-
Austrin, P.1
Mossel, E.2
-
5
-
-
0242337403
-
Tight bounds for the maximum acyclic subgraph problem
-
B. Berger and P. W. Shor, Tight bounds for the maximum acyclic subgraph problem, J. Algorithms, 25 (1997), pp. 1-18. (Pubitemid 127451248)
-
(1997)
Journal of Algorithms
, vol.25
, Issue.1
, pp. 1-18
-
-
Berger, B.1
Shor, P.W.2
-
6
-
-
70350646990
-
Every permutation CSP of arity 3 is approximation resistant
-
M. Charikar, V. Guruswami, and R. Manokaran, Every permutation CSP of arity 3 is approximation resistant, in Proceedings of the 24th Annual IEEE Conference on Computational Complexity, 2009, pp. 62-73.
-
(2009)
Proceedings of the 24th Annual IEEE Conference on Computational Complexity
, pp. 62-73
-
-
Charikar, M.1
Guruswami, V.2
Manokaran, R.3
-
7
-
-
46749087468
-
On the advantage over random for maximum acyclic subgraph
-
M. Charikar, K. Makarychev, and Y. Makarychev, On the advantage over random for maximum acyclic subgraph, in Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science, 2007, pp. 625-633.
-
(2007)
Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science
, pp. 625-633
-
-
Charikar, M.1
Makarychev, K.2
Makarychev, Y.3
-
8
-
-
33748118086
-
Near-optimal algorithms for unique games
-
STOC'06: Proceedings of the 38th Annual ACM Symposium on Theory of Computing
-
M. Charikar, Y. Makarychev, and K. Makarychev, Near-optimal algorithms for unique games, in Proceedings of the 38th Annual ACM Symposium on Theory of Computing, 2006, pp. 205-214. (Pubitemid 44306554)
-
(2006)
Proceedings of the Annual ACM Symposium on Theory of Computing
, vol.2006
, pp. 205-214
-
-
Charikar, M.1
Makarychev, K.2
Makarychev, Y.3
-
9
-
-
0003593943
-
A geometric approach to betweenness
-
PII S0895480195296221
-
B. Chor and M. Sudan, A geometric approach to betweenness, SIAM J. Discrete Math., 11 (1998), pp. 511-523. (Pubitemid 128620586)
-
(1998)
SIAM Journal on Discrete Mathematics
, vol.11
, Issue.4
, pp. 511-523
-
-
Chor, B.1
Sudan, M.2
-
10
-
-
11144262799
-
Is constraint satisfaction over two variables always easy?
-
DOI 10.1002/rsa.20026
-
L. Engebretsen and V. Guruswami, Is constraint satisfaction over two variables always easy?, Random Structures Algorithms, 25 (2004), pp. 150-178. (Pubitemid 40031414)
-
(2004)
Random Structures and Algorithms
, vol.25
, Issue.2
, pp. 150-178
-
-
Engebretsen, L.1
Guruswami, V.2
-
11
-
-
0000255727
-
Approximating minimum feedback sets and multicuts in directed graphs
-
G. Even, J. Naor, B. Schieber, and M. Sudan, Approximating minimum feedback sets and multicuts in directed graphs, Algorithmica, 20 (1998), pp. 151-174. (Pubitemid 128663382)
-
(1998)
Algorithmica (New York)
, vol.20
, Issue.2
, pp. 151-174
-
-
Even, G.1
Naor, J.2
Schieber, B.3
Sudan, M.4
-
13
-
-
84893574327
-
Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming
-
M. X. Goemans and D. P. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, J. Assoc. Comput. Mach., 42 (1995), pp. 1115-1145.
-
(1995)
J. Assoc. Comput. Mach.
, vol.42
, pp. 1115-1145
-
-
Goemans, M.X.1
Williamson, D.P.2
-
14
-
-
57949097560
-
Beating the random ordering is hard: Inapproximability of maximum acyclic subgraph
-
V. Guruswami, R. Manokaran, and P. Raghavendra, Beating the random ordering is hard: Inapproximability of maximum acyclic subgraph, in Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science, 2008, pp. 573-582.
-
(2008)
Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science
, pp. 573-582
-
-
Guruswami, V.1
Manokaran, R.2
Raghavendra, P.3
-
16
-
-
26444477820
-
-
Ph.D. thesis, Royal Institute of Technology, Stockholm, Sweden
-
G. Hast, Beating a Random Assignment, Ph.D. thesis, Royal Institute of Technology, Stockholm, Sweden, 2005.
-
(2005)
Beating A Random Assignment
-
-
Hast, G.1
-
17
-
-
0000844603
-
Some optimal inapproximability results
-
J. Håstad, Some optimal inapproximability results, J. ACM, 48 (2001), pp. 798-859.
-
(2001)
J. ACM
, vol.48
, pp. 798-859
-
-
Håstad, J.1
-
18
-
-
57349107952
-
Every 2-CSP allows nontrivial approximation
-
J. Håstad, Every 2-CSP allows nontrivial approximation, Comput. Complexity, 17 (2008), pp. 549-566.
-
(2008)
Comput. Complexity
, vol.17
, pp. 549-566
-
-
Håstad, J.1
-
19
-
-
71549164098
-
On the approximation resistance of a random predicate
-
J. Håstad, On the approximation resistance of a random predicate, Comput. Complexity, 18 (2009), pp. 413-434.
-
(2009)
Comput. Complexity
, vol.18
, pp. 413-434
-
-
Håstad, J.1
-
21
-
-
0041380430
-
On the minimal number of arcs of a digraph meeting all its directed cutsets
-
A. Karazanov, On the minimal number of arcs of a digraph meeting all its directed cutsets, Graph Theory Newsletters, 8 (1979).
-
(1979)
Graph Theory Newsletters
, vol.8
-
-
Karazanov, A.1
-
22
-
-
0003037529
-
Reducibility among combinatorial problems
-
Plenum, New York
-
R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computations, Plenum, New York, 1972, pp. 85-103.
-
(1972)
Complexity of Computer Computations
, pp. 85-103
-
-
Karp, R.M.1
-
24
-
-
40049085242
-
Optimal inapproximability results for MAX-CUT and other 2-variable CSPs?
-
DOI 10.1137/S0097539705447372
-
S. Khot, G. Kindler, E. Mossel, and R. O'Donnell, Optimal inapproximability results for MAX-CUT and other 2-variable CSPs?, SIAM J. Comput., 37 (2007), pp. 319-357. (Pubitemid 351321999)
-
(2007)
SIAM Journal on Computing
, vol.37
, Issue.1
, pp. 319-357
-
-
Khot, S.1
Kindler, G.2
Mossel, E.3
O'Donnell, R.4
-
25
-
-
38149105774
-
Vertex cover might be hard to approximate to within 2-epsilon
-
S. Khot and O. Regev, Vertex cover might be hard to approximate to within 2-epsilon, J. Comput. System Sci., 74 (2008), pp. 335-349.
-
(2008)
J. Comput. System Sci.
, vol.74
, pp. 335-349
-
-
Khot, S.1
Regev, O.2
-
26
-
-
33748613486
-
1
-
DOI 10.1109/SFCS.2005.74, 1530701, Proceedings - 46th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2005
-
S. Khot and N. K. Vishnoi, The Unique Games conjecture, integrality gap for cut problems and embeddability of negative type metrics into l1, in Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science, 2005, pp. 53-62. (Pubitemid 44375719)
-
(2005)
Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS
, vol.2005
, pp. 53-62
-
-
Khot, S.A.1
Vishnoi, N.K.2
-
27
-
-
84959765508
-
A minimax theorem for directed graphs
-
C. Lucchesi and D. H. Younger, A minimax theorem for directed graphs, J. London Math. Soc. (2), 17 (1978), pp. 369-374.
-
(1978)
J. London Math. Soc.
, vol.17
, Issue.2
, pp. 369-374
-
-
Lucchesi, C.1
Younger, D.H.2
-
29
-
-
57049129456
-
SDP gaps and UGC hardness for multiway cut, 0-extension and metric labelling
-
R. Manokaran, J. S. Naor, P. Raghavendra, and R. Schwartz, SDP gaps and UGC hardness for multiway cut, 0-extension and metric labelling, in Proceedings of the 40th ACM Symposium on Theory of Computing, 2008, pp. 11-20.
-
(2008)
Proceedings of the 40th ACM Symposium on Theory of Computing
, pp. 11-20
-
-
Manokaran, R.1
Naor, J.S.2
Raghavendra, P.3
Schwartz, R.4
-
31
-
-
77952728045
-
Noise stability of functions with low influences: Invariance and optimality
-
E. Mossel, R. O'Donnell, and K. Oleszkiewicz, Noise stability of functions with low influences: Invariance and optimality, Ann. of Math. (2), 171 (2010), pp. 295-341.
-
(2010)
Ann. of Math.
, vol.171
, Issue.2
, pp. 295-341
-
-
Mossel, E.1
O'Donnell, R.2
Oleszkiewicz, K.3
-
32
-
-
0347259047
-
-
Master's thesis, MIT, Cambridge, MA
-
A. Newman, Approximating the Maximum Acyclic Subgraph, Master's thesis, MIT, Cambridge, MA, 2000.
-
(2000)
Approximating the Maximum Acyclic Subgraph
-
-
Newman, A.1
-
33
-
-
35048846539
-
Cuts and orderings: On semidefinite relaxations for the linear ordering problem
-
A. Newman, Cuts and orderings: On semidefinite relaxations for the linear ordering problem, in Proceedings of APPROX-RANDOM, 2004, pp. 195-206.
-
(2004)
Proceedings of APPROX-RANDOM
, pp. 195-206
-
-
Newman, A.1
-
34
-
-
0026366408
-
Optimization, approximation, and complexity classes
-
C. H. Papadimitriou and M. Yannakakis, Optimization, approximation, and complexity classes, J. Comput. System Sci., 43 (1991), pp. 425-440.
-
(1991)
J. Comput. System Sci.
, vol.43
, pp. 425-440
-
-
Papadimitriou, C.H.1
Yannakakis, M.2
-
36
-
-
0001168507
-
Finding a minimum feedback arc set in reducible flow graphs
-
V. Ramachandran, Finding a minimum feedback arc set in reducible flow graphs, J. Algorithms, 9 (1988), pp. 299-313.
-
(1988)
J. Algorithms
, vol.9
, pp. 299-313
-
-
Ramachandran, V.1
-
37
-
-
34249756824
-
Packing directed circuits fractionally
-
P. Seymour, Packing directed circuits fractionally, Combinatorica, 15 (1995), pp. 281-288.
-
(1995)
Combinatorica
, vol.15
, pp. 281-288
-
-
Seymour, P.1
-
38
-
-
0032266121
-
Approximation algorithms for constraint satisfaction problems involving at most three variables per constraint
-
U. Zwick, Approximation algorithms for constraint satisfaction problems involving at most three variables per constraint, in Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, 1998, pp. 201-210.
-
(1998)
Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms
, pp. 201-210
-
-
Zwick, U.1
|