메뉴 건너뛰기




Volumn 17, Issue 4, 2008, Pages 549-566

Every 2-CSP allows nontrivial approximation

Author keywords

Approximation algorithms; Constraint satisfaction; Semi definite programming

Indexed keywords


EID: 57349107952     PISSN: 10163328     EISSN: 14208954     Source Type: Journal    
DOI: 10.1007/s00037-008-0256-y     Document Type: Article
Times cited : (23)

References (28)
  • 1
    • 0003169116 scopus 로고
    • Interior point methods in semidefmite programming with applications to combinatorial optimization
    • F. ALIZADEH (1995). Interior point methods in semidefmite programming with applications to combinatorial optimization. SIAM Journal on Optimization 5, 13-51.
    • (1995) SIAM Journal on Optimization , vol.5 , pp. 13-51
    • ALIZADEH, F.1
  • 2
    • 0001317699 scopus 로고    scopus 로고
    • A new way to use semidefinite programming with applications to linear equations mod p
    • G. ANDERSSON, L. ENGEBRETSEN & J. HÅSTAD (2001). A new way to use semidefinite programming with applications to linear equations mod p. Journal of Algorithms 39, 162-204.
    • (2001) Journal of Algorithms , vol.39 , pp. 162-204
    • ANDERSSON, G.1    ENGEBRETSEN, L.2    HÅSTAD, J.3
  • 4
    • 0032058198 scopus 로고    scopus 로고
    • Proof verification and intractability of approximation problems
    • S. ARORA, C. LUND, R. MOTWANI, M. SUDAN & M. SZEGEDY (1998). Proof verification and intractability of approximation problems. Journal of the ACM 45, 501-555.
    • (1998) Journal of the ACM , vol.45 , pp. 501-555
    • ARORA, S.1    LUND, C.2    MOTWANI, R.3    SUDAN, M.4    SZEGEDY, M.5
  • 7
    • 0029482059 scopus 로고
    • A dichotomy theorem for maximum generlized satisfiability problems
    • N. CREIGNOU (1995). A dichotomy theorem for maximum generlized satisfiability problems. Journal of Computer and System Science 52, 511-522.
    • (1995) Journal of Computer and System Science , vol.52 , pp. 511-522
    • CREIGNOU, N.1
  • 10
    • 11144262799 scopus 로고    scopus 로고
    • Is constraint satisfaction over two variables always easy?
    • L. ENGEBRETSEN & V. GURUSWAMI (2004). Is constraint satisfaction over two variables always easy? Random Structures and Algorithms 25, 150-178.
    • (2004) Random Structures and Algorithms , vol.25 , pp. 150-178
    • ENGEBRETSEN, L.1    GURUSWAMI, V.2
  • 11
    • 0032108328 scopus 로고    scopus 로고
    • A threshold of ln n for approximating set cover
    • U. FEIGE (1998). A threshold of ln n for approximating set cover. Journal of the ACM 45, 634-652.
    • (1998) Journal of the ACM , vol.45 , pp. 634-652
    • FEIGE, U.1
  • 13
    • 35048883449 scopus 로고    scopus 로고
    • U. FEIGE & D. REICHMAN (2004). On systems of linear equations with two variables per equation. In Approximation, Randomization and Combinatorial Optimization, K. JANSEN, S. KHANNA, J. ROLIM & D. RON, editors, 117-127. Proceedings of Approx 2004 and Random 2004, LNCS 3122.
    • U. FEIGE & D. REICHMAN (2004). On systems of linear equations with two variables per equation. In Approximation, Randomization and Combinatorial Optimization, K. JANSEN, S. KHANNA, J. ROLIM & D. RON, editors, 117-127. Proceedings of Approx 2004 and Random 2004, LNCS 3122.
  • 15
    • 84893574327 scopus 로고
    • Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming
    • M. GOEMANS & D. WILLIAMSON (1995). Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM 42, 1115-1145.
    • (1995) Journal of the ACM , vol.42 , pp. 1115-1145
    • GOEMANS, M.1    WILLIAMSON, D.2
  • 16
    • 51249185617 scopus 로고    scopus 로고
    • M. GRÖTSCHEL1 L. LOVÁSZ & A. SCHRIJVER (1981). The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1, 169-197.
    • M. GRÖTSCHEL1 L. LOVÁSZ & A. SCHRIJVER (1981). The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1, 169-197.
  • 17
    • 0013189831 scopus 로고    scopus 로고
    • Approximation algorithms for Max 4-Sat and rounding procedures for semidefinite programs
    • E. HALPERIN & U. ZWICK (2001). Approximation algorithms for Max 4-Sat and rounding procedures for semidefinite programs. Journal of Algorithms 40, 184-211.
    • (2001) Journal of Algorithms , vol.40 , pp. 184-211
    • HALPERIN, E.1    ZWICK, U.2
  • 20
    • 0000844603 scopus 로고    scopus 로고
    • Some optimal inapproximability results
    • J. HÅSTAD (2001). Some optimal inapproximability results. Journal of ACM 48, 798-859.
    • (2001) Journal of ACM , vol.48 , pp. 798-859
    • HÅSTAD, J.1
  • 24
    • 40049085242 scopus 로고    scopus 로고
    • Optimal inapproximability results for Max-Cut and other 2-variabIe CSPs?
    • S. KHOT, E. MOSSEL, G. KINDLER & R. O'DONNELL (2007). Optimal inapproximability results for Max-Cut and other 2-variabIe CSPs? SIAM Journal on Computing 37, 319-357.
    • (2007) SIAM Journal on Computing , vol.37 , pp. 319-357
    • KHOT, S.1    MOSSEL, E.2    KINDLER, G.3    O'DONNELL, R.4
  • 27
    • 0032266121 scopus 로고    scopus 로고
    • Approximation algorithms for constraint satisfaction problems involving at most three variables per constraint
    • ACM
    • U. ZWICK (1998). Approximation algorithms for constraint satisfaction problems involving at most three variables per constraint. In Proceedings 9th Annual ACM-SIAM Symposium on Discrete Algorithms, 201-210. ACM.
    • (1998) Proceedings 9th Annual ACM-SIAM Symposium on Discrete Algorithms , pp. 201-210
    • ZWICK, U.1
  • 28
    • 0032631766 scopus 로고    scopus 로고
    • Outward rotations: A tool for rounding solutions of semidefinite programming relaxations, with applications to MAX CUT and other problems
    • ACM
    • U. ZWICK (1999). Outward rotations: a tool for rounding solutions of semidefinite programming relaxations, with applications to MAX CUT and other problems. In Proceedings 31st ACM Symposium on Theory of Computing, 679-687. ACM.
    • (1999) Proceedings 31st ACM Symposium on Theory of Computing , pp. 679-687
    • ZWICK, U.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.