-
1
-
-
0002478027
-
On mixing and stability of limit theorems
-
MR0517416
-
Aldous, D.J. and Eagleson, G.K. (1978). On mixing and stability of limit theorems. Ann. Probab. 6 325-331. MR0517416
-
(1978)
Ann. Probab.
, vol.6
, pp. 325-331
-
-
Aldous, D.J.1
Eagleson, G.K.2
-
4
-
-
81455159573
-
Multipower variation for Brownian semistationary processes (full version)
-
Aarhus Univ. Available at
-
Barndorff-Nielsen, O.E., Corcuera, J.M. and Podolskij, M. (2009). Multipower variation for Brownian semistationary processes (full version). CREATES research paper 2009-21, Aarhus Univ. Available at http://www.econ.au.dk/ research/research-centres/creates/research/research-papers/ research-papers- 2009/.
-
(2009)
CREATES Research Paper 2009-21
-
-
Barndorff-Nielsen, O.E.1
Corcuera, J.M.2
Podolskij, M.3
-
5
-
-
64249110018
-
Bipower variation for Gaussian processes with stationary increments
-
MR2508510
-
Barndorff-Nielsen, O.E., Corcuera, J.M., Podolskij, M. andWoerner, J.H.C. (2009). Bipower variation for Gaussian processes with stationary increments. J. Appl. Probab. 46 132-150. MR2508510
-
(2009)
J. Appl. Probab.
, vol.46
, pp. 132-150
-
-
Barndorff-Nielsen, O.E.1
Corcuera, J.M.2
Podolskij, M.3
Woerner, J.H.C.4
-
6
-
-
33745660397
-
A central limit theorem for realised power and bipower variations of continuous semimartingales
-
Festschrift in Honour of A.N. Shiryaev (Y. Kabanov, R. Liptser and J. Stoyanov, eds.). Heidelberg: Springer. MR2233534
-
Barndorff-Nielsen, O.E., Graversen, S.E., Jacod, J., Podolskij, M. and Shephard, N. (2006). A central limit theorem for realised power and bipower variations of continuous semimartingales. In From Stochastic Calculus to Mathematical Finance. Festschrift in Honour of A.N. Shiryaev (Y. Kabanov, R. Liptser and J. Stoyanov, eds.) 33-68. Heidelberg: Springer. MR2233534
-
(2006)
From Stochastic Calculus to Mathematical Finance
, pp. 33-68
-
-
Barndorff-Nielsen, O.E.1
Graversen, S.E.2
Jacod, J.3
Podolskij, M.4
Shephard, N.5
-
7
-
-
3042776069
-
Lévy-based tempo-spatial modelling: With applications to turbulence
-
MR2068843
-
Barndorff-Nielsen, O.E. and Schmiegel, J. (2004). Lévy-based tempo-spatial modelling: With applications to turbulence. Uspekhi Mat. NAUK 59 65-91. MR2068843
-
(2004)
Uspekhi Mat. NAUK
, vol.59
, pp. 65-91
-
-
Barndorff-Nielsen, O.E.1
Schmiegel, J.2
-
8
-
-
84883633568
-
Ambit processes: With applications to turbulence and cancer growth
-
(F.E. Benth, G.D. Nunno, T. Linstrøm, B. Øksendal and T. Zhang, eds.). Heidelberg: Springer. MR2397785
-
Barndorff-Nielsen, O.E. and Schmiegel, J. (2007). Ambit processes: With applications to turbulence and cancer growth. In Stochastic Analysis and Applications: The Abel Symposium 2005 (F.E. Benth, G.D. Nunno, T. Linstrøm, B. Øksendal and T. Zhang, eds.) 93-124. Heidelberg: Springer. MR2397785
-
(2007)
Stochastic Analysis and Applications: The Abel Symposium 2005
, pp. 93-124
-
-
Barndorff-Nielsen, O.E.1
Schmiegel, J.2
-
9
-
-
55449122616
-
A stochastic differential equation framework for the timewise dynamics of turbulent velocities
-
Barndorff-Nielsen, O.E. and Schmiegel, J. (2008a). A stochastic differential equation framework for the timewise dynamics of turbulent velocities. Theory Probab. Appl. 52 372-388.
-
(2008)
Theory Probab. Appl.
, vol.52
, pp. 372-388
-
-
Barndorff-Nielsen, O.E.1
Schmiegel, J.2
-
10
-
-
84895275647
-
Time change, volatility and turbulence
-
(A. Sarychev, A. Shiryaev, M. Guerra and M.D.R. Grossinho, eds.). Berlin: Springer. MR2484103
-
Barndorff-Nielsen, O.E. and Schmiegel, J. (2008b): Time change, volatility and turbulence. In Proceedings of the Workshop on Mathematical Control Theory and Finance (A. Sarychev, A. Shiryaev, M. Guerra and M.D.R. Grossinho, eds.) 29-53. Berlin: Springer. MR2484103
-
(2008)
Proceedings of the Workshop on Mathematical Control Theory and Finance
, pp. 29-53
-
-
Barndorff-Nielsen, O.E.1
Schmiegel, J.2
-
12
-
-
79960713613
-
Brownian semistationary processes and volatility/ intermittency
-
(H. Albrecher, W. Rungaldier and W. Schachermeyer, eds.). Berlin: W. de Gruyter. MR2648456
-
Barndorff-Nielsen, O.E. and Schmiegel, J. (2009). Brownian semistationary processes and volatility/ intermittency. In Advanced Financial Modelling. Radon Series Comp. Appl. Math. 8 (H. Albrecher, W. Rungaldier and W. Schachermeyer, eds.) 1-26. Berlin: W. de Gruyter. MR2648456
-
(2009)
Advanced Financial Modelling. Radon Series Comp. Appl. Math.
, vol.8
, pp. 1-26
-
-
Barndorff-Nielsen, O.E.1
Schmiegel, J.2
-
13
-
-
19644380659
-
Power and bipower variation with stochastic volatility and jumps (with discussion)
-
Barndorff-Nielsen, O.E. and Shephard, N. (2004). Power and bipower variation with stochastic volatility and jumps (with discussion). J. Fin. Econometrics 2 1-48.
-
(2004)
J. Fin. Econometrics
, vol.2
, pp. 1-48
-
-
Barndorff-Nielsen, O.E.1
Shephard, N.2
-
14
-
-
2642557940
-
Econometric analysis of realised covariation: High frequency covariance, regression and correlation in financial economics
-
MR2051439
-
Barndorff-Nielsen, O.E. and Shephard, N. (2004). Econometric analysis of realised covariation: High frequency covariance, regression and correlation in financial economics. Econometrica 72 885-925. MR2051439
-
(2004)
Econometrica
, vol.72
, pp. 885-925
-
-
Barndorff-Nielsen, O.E.1
Shephard, N.2
-
15
-
-
33644508697
-
Impact of jumps on returns and realised variances: Econometric analysis of time-deformed Lévy processes
-
MR2276000
-
Barndorff-Nielsen, O.E. and Shephard, N. (2006). Impact of jumps on returns and realised variances: Econometric analysis of time-deformed Lévy processes. J. Econometrics 131 217-252. MR2276000
-
(2006)
J. Econometrics
, vol.131
, pp. 217-252
-
-
Barndorff-Nielsen, O.E.1
Shephard, N.2
-
16
-
-
39049117286
-
Variation, jumps, market frictions and high frequency data in financial econometrics
-
(R. Blundell, T. Persson and W.K. Newey, eds.). Cambridge Univ. Press
-
Barndorff-Nielsen, O.E. and Shephard, N. (2007). Variation, jumps, market frictions and high frequency data in financial econometrics. In Advances in Economics and Econometrics. Theory and Applications. Ninth World Congress (R. Blundell, T. Persson and W.K. Newey, eds.) 328-372. Cambridge Univ. Press.
-
(2007)
Advances in Economics and Econometrics. Theory and Applications. Ninth World Congress
, pp. 328-372
-
-
Barndorff-Nielsen, O.E.1
Shephard, N.2
-
17
-
-
33645975182
-
Limit theorems for multipower variation in the presence of jumps
-
MR2218336
-
Barndorff-Nielsen, O.E. and Shephard, N. and Winkel, M. (2006). Limit theorems for multipower variation in the presence of jumps. Stochastic Process. Appl. 116 796-806. MR2218336
-
(2006)
Stochastic Process. Appl.
, vol.116
, pp. 796-806
-
-
Barndorff-Nielsen, O.E.1
Shephard, N.2
Winkel, M.3
-
18
-
-
47249150060
-
Asymptotic expansions and central limit theorem for quadratic variations of Gaussian processes
-
MR2348748
-
Bégyn, A. (2007). Asymptotic expansions and central limit theorem for quadratic variations of Gaussian processes. Bernoulli 13 712-753. MR2348748
-
(2007)
Bernoulli
, vol.13
, pp. 712-753
-
-
Bégyn, A.1
-
19
-
-
35348961996
-
Functional limit theorems for generalized quadratic variations of Gaussian processes
-
DOI 10.1016/j.spa.2007.03.001, PII S030441490700035X
-
Bégyn, A. (2007). Functional limit theorems for generalized quadratic variations of Gaussian processes. Stochastic Process. Appl. 117 1848-1869. MR2437732 (Pubitemid 47615222)
-
(2007)
Stochastic Processes and their Applications
, vol.117
, Issue.12
, pp. 1848-1869
-
-
Begyn, A.1
-
22
-
-
0000138698
-
Convergence en loi des H-variation d'un processus gaussien stationaire
-
MR1023952
-
Guyon, X. and Leon, J. (1989). Convergence en loi des H-variation d'un processus gaussien stationaire. Ann. Inst. H. Poincaré Probab. Statist. 25 265-282. MR1023952
-
(1989)
Ann. Inst. H. Poincaré Probab. Statist.
, vol.25
, pp. 265-282
-
-
Guyon, X.1
Leon, J.2
-
23
-
-
38249035251
-
A central limit theorem for non-instantaneous filters of a stationary Gaussian process
-
MR0890889
-
Ho, H.C. and Sun, T.C. (1987). A central limit theorem for non-instantaneous filters of a stationary Gaussian process. J. Multivariate Anal. 22 144-155. MR0890889
-
(1987)
J. Multivariate Anal.
, vol.22
, pp. 144-155
-
-
Ho, H.C.1
Sun, T.C.2
-
24
-
-
39149086045
-
Asymptotic properties of realized power variations and related functionals of semimartingales
-
DOI 10.1016/j.spa.2007.05.005, PII S030441490700083X
-
Jacod, J. (2008). Asymptotic properties of realized power variations and related functionals of semimartingales. Stochastic Process. Appl. 118 517-559. MR2394762 (Pubitemid 351258211)
-
(2008)
Stochastic Processes and their Applications
, vol.118
, Issue.4
, pp. 517-559
-
-
Jacod, J.1
-
25
-
-
56349105969
-
-
Lecture notes. Department of Statistics, Université Paris VI
-
Jacod, J. (2008). Statistics and high frequency data. Lecture notes. Department of Statistics, Université Paris VI.
-
(2008)
Statistics and High Frequency Data
-
-
Jacod, J.1
-
27
-
-
42649124919
-
A note on the central limit theorem for bipower variation of general functions
-
DOI 10.1016/j.spa.2007.07.009, PII S0304414907001305
-
Kinnebrock, S. and Podolskij, M. (2008). A note on the central limit theorem for bipower variation of general functions. Stochastic Process. Appl. 118 1056-1070. MR2418258 (Pubitemid 351602136)
-
(2008)
Stochastic Processes and their Applications
, vol.118
, Issue.6
, pp. 1056-1070
-
-
Kinnebrock, S.1
Podolskij, M.2
-
28
-
-
84939698703
-
Absolute moments in 3-dimensional normal distribution
-
MR0052072
-
Nabeya, S. (1952). Absolute moments in 3-dimensional normal distribution. Ann. Inst. Statist. Math. 4 15-30. MR0052072
-
(1952)
Ann. Inst. Statist. Math.
, vol.4
, pp. 15-30
-
-
Nabeya, S.1
-
30
-
-
14944377936
-
Central limit theorems for sequences of multiple stochastic integrals
-
DOI 10.1214/009117904000000621
-
Nualart, D. and Peccati, G. (2005). Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33 177-193. MR2118863 (Pubitemid 40367061)
-
(2005)
Annals of Probability
, vol.33
, Issue.1
, pp. 177-193
-
-
Nualart, D.1
Peccati, G.2
-
31
-
-
39149144861
-
Central limit theorems for multiple stochastic integrals and Malliavin calculus
-
DOI 10.1016/j.spa.2007.05.004, PII S0304414907000828
-
Nualart, D. and Ortiz-Latorre, S. (2008). Central limit theorems for multiple stochastic integrals and Malliavin calculus. Stochastic Process. Appl. 118 614-628. MR2394845 (Pubitemid 351258210)
-
(2008)
Stochastic Processes and their Applications
, vol.118
, Issue.4
, pp. 614-628
-
-
Nualart, D.1
Ortiz-Latorre, S.2
-
32
-
-
85007107687
-
Gaussian limits for vector-valued multiple stochastic integrals
-
Seminaire de Probabilites XXXVIII (M. Emery, M. Ledoux and M. Yor, eds.). Berlin: Springer. MR2126978
-
Peccati, G. and Tudor, C.A. (2005). Gaussian limits for vector-valued multiple stochastic integrals. In Seminaire de Probabilites XXXVIII (M. Emery, M. Ledoux and M. Yor, eds.). Lecture Notes in Mathematics 1857 247-262. Berlin: Springer. MR2126978
-
(2005)
Lecture Notes in Mathematics
, vol.1857
, pp. 247-262
-
-
Peccati, G.1
Tudor, C.A.2
-
33
-
-
33645976274
-
Power and multipower variation: Inference for high frequency data
-
(A.N. Shiryaev, M. do Rosário Grossihno, P. Oliviera and M. Esquivel, eds.). Heidelberg: Springer. MR2230770
-
Woerner, J.H.C. (2006). Power and multipower variation: Inference for high frequency data. In Stochastic Finance (A.N. Shiryaev, M. do Rosário Grossihno, P. Oliviera and M. Esquivel, eds.) 343-364. Heidelberg: Springer. MR2230770
-
(2006)
Stochastic Finance
, pp. 343-364
-
-
Woerner, J.H.C.1
|