-
3
-
-
0000735791
-
Nonconservative Lagrangian and Hamiltonian mechanics
-
Riewe F. Nonconservative Lagrangian and Hamiltonian mechanics. Phys Rev E 1996, 53:1890-1899.
-
(1996)
Phys Rev E
, vol.53
, pp. 1890-1899
-
-
Riewe, F.1
-
4
-
-
4243530410
-
Mechanics with fractional derivatives
-
Riewe F. Mechanics with fractional derivatives. Phys Rev E 1997, 55:3581-3592.
-
(1997)
Phys Rev E
, vol.55
, pp. 3581-3592
-
-
Riewe, F.1
-
5
-
-
0035737230
-
Fractional sequential mechanics - models with symmetric fractional derivative
-
Klimek M. Fractional sequential mechanics - models with symmetric fractional derivative. Czech J Phys 2001, 51:1348-1354.
-
(2001)
Czech J Phys
, vol.51
, pp. 1348-1354
-
-
Klimek, M.1
-
6
-
-
0036027310
-
Lagrangean and Hamiltonian fractional sequential mechanics
-
Klimek M. Lagrangean and Hamiltonian fractional sequential mechanics. Czech J Phys 2002, 52:1247-1253.
-
(2002)
Czech J Phys
, vol.52
, pp. 1247-1253
-
-
Klimek, M.1
-
7
-
-
0036701004
-
Formulation of Euler-Lagrange equations for fractional variational problems
-
Agrawal O.P. Formulation of Euler-Lagrange equations for fractional variational problems. J Math Anal Appl 2002, 272:368-379.
-
(2002)
J Math Anal Appl
, vol.272
, pp. 368-379
-
-
Agrawal, O.P.1
-
8
-
-
15544379439
-
A general formulation and solution scheme for fractional optimal control problems
-
Agrawal O.P. A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn 2004, 38:191-206.
-
(2004)
Nonlinear Dyn
, vol.38
, pp. 191-206
-
-
Agrawal, O.P.1
-
9
-
-
33746876366
-
Fractional variational calculus and the transversality conditions
-
Agrawal O.P. Fractional variational calculus and the transversality conditions. J Phys A: Math Gen 2006, 39:10375-10384.
-
(2006)
J Phys A: Math Gen
, vol.39
, pp. 10375-10384
-
-
Agrawal, O.P.1
-
10
-
-
34748901185
-
Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems
-
Agrawal O.P., Baleanu D. Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems. J Vib Control 2007, 13(9-10):1269-1281.
-
(2007)
J Vib Control
, vol.13
, Issue.9-10
, pp. 1269-1281
-
-
Agrawal, O.P.1
Baleanu, D.2
-
11
-
-
41849118424
-
Variational problems with fractional derivatives: Euler-Lagrange equations
-
Atanackovic T.M., Konjik S., Pilipovic S. Variational problems with fractional derivatives: Euler-Lagrange equations. J Phys A: Math Theor 2008, 41(9). 10.1088/1751-8113/41/9/095201.
-
(2008)
J Phys A: Math Theor
, vol.41
, Issue.9
-
-
Atanackovic, T.M.1
Konjik, S.2
Pilipovic, S.3
-
12
-
-
70349490327
-
Calculus of variations with fractional derivatives and fractional integrals
-
Almeida R., Torres D.F.M. Calculus of variations with fractional derivatives and fractional integrals. Appl Math Lett 2009, 22(12):1816-1820.
-
(2009)
Appl Math Lett
, vol.22
, Issue.12
, pp. 1816-1820
-
-
Almeida, R.1
Torres, D.F.M.2
-
13
-
-
23344444772
-
Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives
-
Baleanu D., Muslih S.I. Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives. Phys Scr 2005, 72(2-3):119-121.
-
(2005)
Phys Scr
, vol.72
, Issue.2-3
, pp. 119-121
-
-
Baleanu, D.1
Muslih, S.I.2
-
14
-
-
33750972567
-
The Hamilton formalism with fractional derivatives
-
Rabei E.M., Nawafleh K.I., Hijjawi R.S., Muslih S.I., Baleanu D. The Hamilton formalism with fractional derivatives. J Math Anal Appl 2007, 327:891-897.
-
(2007)
J Math Anal Appl
, vol.327
, pp. 891-897
-
-
Rabei, E.M.1
Nawafleh, K.I.2
Hijjawi, R.S.3
Muslih, S.I.4
Baleanu, D.5
-
15
-
-
34250210234
-
Fractional variational calculus in terms of Riesz fractional derivatives
-
Agrawal O.P. Fractional variational calculus in terms of Riesz fractional derivatives. J Phys A: Math Theor 2007, 40(24):6287.
-
(2007)
J Phys A: Math Theor
, vol.40
, Issue.24
, pp. 6287
-
-
Agrawal, O.P.1
-
17
-
-
79961009317
-
Fractional variational calculus with classical and combined Caputo derivatives, Nonlinear Anal Ser A: Theory Methods Appl
-
in press. doi:10.1016/j.na.2011.01.010.
-
Odzijewicz T, Malinowska AB, Torres DFM. Fractional variational calculus with classical and combined Caputo derivatives, Nonlinear Anal Ser A: Theory Methods Appl, in press. doi:10.1016/j.na.2011.01.010. doi:10.1016/j.na.2011.01.010.
-
-
-
Odzijewicz, T.1
Malinowska, A.B.2
Torres, D.F.M.3
-
18
-
-
78049494452
-
Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions
-
Tomovski Z., Hilfer R., Srivastava H.M. Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions. Integr Transf Spec Funct 2010, 21(11):797-814.
-
(2010)
Integr Transf Spec Funct
, vol.21
, Issue.11
, pp. 797-814
-
-
Tomovski, Z.1
Hilfer, R.2
Srivastava, H.M.3
-
21
-
-
44649133070
-
Fractional embedding of differential operators and lagrangian systems
-
30 May 2006
-
Cresson, J., 2006. Fractional embedding of differential operators and lagrangian systems, 30 May 2006. arxiv:math.DS/0605752v1.
-
(2006)
-
-
Cresson, J.1
-
22
-
-
34548583736
-
Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order (α,β)
-
El-Nabulsi R.A., Torres D.F.M. Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order (α,β). Math Methods Appl Sci 2007, 30(15):1931-1939.
-
(2007)
Math Methods Appl Sci
, vol.30
, Issue.15
, pp. 1931-1939
-
-
El-Nabulsi, R.A.1
Torres, D.F.M.2
-
23
-
-
77957259811
-
Fractional Noether's theorem in the Riesz-Caputo sense
-
Frederico G.S.F., Torres D.F.M. Fractional Noether's theorem in the Riesz-Caputo sense. Appl Math Comput 2010, 217(3):1023-1033.
-
(2010)
Appl Math Comput
, vol.217
, Issue.3
, pp. 1023-1033
-
-
Frederico, G.S.F.1
Torres, D.F.M.2
|