메뉴 건너뛰기




Volumn 192, Issue 2, 2011, Pages 568-575

Modeling of membrane bioreactor treating hypersaline oily wastewater by artificial neural network

Author keywords

Artificial neural network; Halophilic microorganisms; Hypersaline oily wastewater; Membrane bioreactor; Modeling

Indexed keywords

ARTIFICIAL NEURAL NETWORK; DISCHARGE LIMIT; GOOD CORRELATIONS; HALOPHILIC MICROORGANISMS; HYPERSALINE; MEMBRANE BIOREACTOR; OIL AND GREASE; OILY WASTEWATER; OPERATIONAL DATA; ORGANIC LOADING RATES; REMOVAL RATE; SEQUENCING BATCH REACTORS; TESTING PROCEDURE; TOTAL DISSOLVED SOLIDS; TOTAL ORGANIC CARBON;

EID: 79960195404     PISSN: 03043894     EISSN: 18733336     Source Type: Journal    
DOI: 10.1016/j.jhazmat.2011.05.052     Document Type: Article
Times cited : (99)

References (41)
  • 1
    • 0037142770 scopus 로고    scopus 로고
    • Biodegradation of crude oil across a wide range of salinities by an extremely halotolerant bacterial consortium MPD-M, immobilized onto polypropylene fibers
    • Diaz M.P., Boyd K.G., Grigson S.J.W., Burgess J.G. Biodegradation of crude oil across a wide range of salinities by an extremely halotolerant bacterial consortium MPD-M, immobilized onto polypropylene fibers. Biotechnol. Bioeng. 2002, 79:145-153.
    • (2002) Biotechnol. Bioeng. , vol.79 , pp. 145-153
    • Diaz, M.P.1    Boyd, K.G.2    Grigson, S.J.W.3    Burgess, J.G.4
  • 3
    • 0002823544 scopus 로고
    • A comprehensive determination of produced water composition
    • Plenum Publishing Corp, New York, J.P. Ray, F.R. Engelhardt (Eds.)
    • Tibbetts P.J.C., Buchanan I.T., Gawel L.J., Large R. A comprehensive determination of produced water composition. Technological/Environmental Issues and Solutions 1992, 97-113. Plenum Publishing Corp, New York. J.P. Ray, F.R. Engelhardt (Eds.).
    • (1992) Technological/Environmental Issues and Solutions , pp. 97-113
    • Tibbetts, P.J.C.1    Buchanan, I.T.2    Gawel, L.J.3    Large, R.4
  • 4
    • 79960194347 scopus 로고    scopus 로고
    • USEPA,
    • USEPA, http://www.epa.gov/.
  • 5
    • 0036339388 scopus 로고    scopus 로고
    • Performance evaluation of an activated sludge system for removing petroleum hydrocarbons from oilfield produced water
    • Tellez G.T., Nirmalakhandan N., Gardea-Torresdey J.L. Performance evaluation of an activated sludge system for removing petroleum hydrocarbons from oilfield produced water. Adv. Environ. Res. 2002, 6:455-470.
    • (2002) Adv. Environ. Res. , vol.6 , pp. 455-470
    • Tellez, G.T.1    Nirmalakhandan, N.2    Gardea-Torresdey, J.L.3
  • 7
    • 0028916143 scopus 로고
    • Treatment of hypersaline wastewater in the sequencing batch reactor
    • Woolard C.R., Irvine R.L. Treatment of hypersaline wastewater in the sequencing batch reactor. Water Res. 1995, 29:1159-1168.
    • (1995) Water Res. , vol.29 , pp. 1159-1168
    • Woolard, C.R.1    Irvine, R.L.2
  • 8
    • 13844280347 scopus 로고    scopus 로고
    • Treatment of complex chemical wastewater in a sequencing batch reactor (SBR) with an aerobic suspended growth configuration
    • Venkata Mohan S., Chandrashekara Rao N., Krishna Prasad K., Madhavi B.T.V., Sharma P.N. Treatment of complex chemical wastewater in a sequencing batch reactor (SBR) with an aerobic suspended growth configuration. Process Biochem. 2005, 40:1501-1508.
    • (2005) Process Biochem. , vol.40 , pp. 1501-1508
    • Venkata Mohan, S.1    Chandrashekara Rao, N.2    Krishna Prasad, K.3    Madhavi, B.T.V.4    Sharma, P.N.5
  • 10
    • 0037350270 scopus 로고    scopus 로고
    • Characteristics of microfiltration membranes in a membrane coupled sequencing batch reactor system
    • Kang I.J., Lee C.H., Kim K.J. Characteristics of microfiltration membranes in a membrane coupled sequencing batch reactor system. Water Res. 2003, 37:1192-1197.
    • (2003) Water Res. , vol.37 , pp. 1192-1197
    • Kang, I.J.1    Lee, C.H.2    Kim, K.J.3
  • 11
    • 33748767651 scopus 로고    scopus 로고
    • Fouling in membrane bioreactors used in wastewater treatment
    • Le-Clech P., Chen V., Fane T.A.G. Fouling in membrane bioreactors used in wastewater treatment. J. Membr. Sci. 2006, 284:17-53.
    • (2006) J. Membr. Sci. , vol.284 , pp. 17-53
    • Le-Clech, P.1    Chen, V.2    Fane, T.A.G.3
  • 12
    • 77958083206 scopus 로고    scopus 로고
    • Artificial neural network modelling of a large-scale wastewater treatment plant operation
    • Guclu D., Dursun S. Artificial neural network modelling of a large-scale wastewater treatment plant operation. Bioprocess Biosyst. Eng. 2010, 33:1051-1058.
    • (2010) Bioprocess Biosyst. Eng. , vol.33 , pp. 1051-1058
    • Guclu, D.1    Dursun, S.2
  • 13
    • 0036469175 scopus 로고    scopus 로고
    • Predictive non-linear modeling of complex data by artificial neural networks
    • Almeida J.S. Predictive non-linear modeling of complex data by artificial neural networks. Curr. Opin. Biotechnol. 2002, 13:72-76.
    • (2002) Curr. Opin. Biotechnol. , vol.13 , pp. 72-76
    • Almeida, J.S.1
  • 14
    • 34249743593 scopus 로고    scopus 로고
    • Monitoring of sequencing batch reactor for nitrogen and phosphorus removal using neural networks
    • Hong S.H., Lee M.W., Lee D.S., Park J.M. Monitoring of sequencing batch reactor for nitrogen and phosphorus removal using neural networks. Biochem. Eng. J. 2007, 35:365-370.
    • (2007) Biochem. Eng. J. , vol.35 , pp. 365-370
    • Hong, S.H.1    Lee, M.W.2    Lee, D.S.3    Park, J.M.4
  • 16
    • 22544446792 scopus 로고    scopus 로고
    • New tool for evaluation of performance of wastewater treatment plant: artificial neural network
    • Cinar O. New tool for evaluation of performance of wastewater treatment plant: artificial neural network. Process Biochem. 2005, 408:2980-2984.
    • (2005) Process Biochem. , vol.408 , pp. 2980-2984
    • Cinar, O.1
  • 17
    • 0041509130 scopus 로고    scopus 로고
    • Assessing wastewater reclamation potential by neural network model
    • Chen J.C., Chang N.B., Shieh W.K. Assessing wastewater reclamation potential by neural network model. Eng. Appl. Artif. Intell. 2003, 16:149-157.
    • (2003) Eng. Appl. Artif. Intell. , vol.16 , pp. 149-157
    • Chen, J.C.1    Chang, N.B.2    Shieh, W.K.3
  • 18
    • 33947712235 scopus 로고    scopus 로고
    • Artificial neural-networks for rapid WWTP performance evaluation: methodology and case study
    • Raduly B., Gernaey K.V., Capodaglio A.G., Mikkelsen P.S., Henze M. Artificial neural-networks for rapid WWTP performance evaluation: methodology and case study. Environ. Modell. Softw. 2007, 22:1208-1216.
    • (2007) Environ. Modell. Softw. , vol.22 , pp. 1208-1216
    • Raduly, B.1    Gernaey, K.V.2    Capodaglio, A.G.3    Mikkelsen, P.S.4    Henze, M.5
  • 19
    • 34447309364 scopus 로고    scopus 로고
    • Prediction of chemical oxygen demand (COD) based on wavelet decomposition and neural networks
    • Hanbay D., Turkoglu I., Demir Y. Prediction of chemical oxygen demand (COD) based on wavelet decomposition and neural networks. Clean 2007, 35:250-254.
    • (2007) Clean , vol.35 , pp. 250-254
    • Hanbay, D.1    Turkoglu, I.2    Demir, Y.3
  • 20
    • 27644555231 scopus 로고    scopus 로고
    • Modelling approaches for filtration processes with novel submerged capillary modules in membrane bioreactors for wastewater treatment
    • Geissler S., Wintgens T., Melin T., Vossenkaul K., Kullmann C. Modelling approaches for filtration processes with novel submerged capillary modules in membrane bioreactors for wastewater treatment. Desalination 2005, 178:125-134.
    • (2005) Desalination , vol.178 , pp. 125-134
    • Geissler, S.1    Wintgens, T.2    Melin, T.3    Vossenkaul, K.4    Kullmann, C.5
  • 21
    • 33745941576 scopus 로고    scopus 로고
    • Modeling of submerged membrane bioreactor treating cheese whey wastewater by artificial neural network
    • Cinar O., Hasar H., Kinaci C. Modeling of submerged membrane bioreactor treating cheese whey wastewater by artificial neural network. J. Biotechnol. 2006, 123:204-209.
    • (2006) J. Biotechnol. , vol.123 , pp. 204-209
    • Cinar, O.1    Hasar, H.2    Kinaci, C.3
  • 22
    • 0036827287 scopus 로고    scopus 로고
    • Kinetics of phenol biodegradation in high salt solutions
    • Peyton B., Wilsona T., Yonge D. Kinetics of phenol biodegradation in high salt solutions. Water Res. 2002, 36:4811-4820.
    • (2002) Water Res. , vol.36 , pp. 4811-4820
    • Peyton, B.1    Wilsona, T.2    Yonge, D.3
  • 23
    • 0029380038 scopus 로고
    • Treatment of fuel oil and crude oil contaminated waters by ultrafiltration membranes
    • Tansel B., Regula J., Shalewitz R. Treatment of fuel oil and crude oil contaminated waters by ultrafiltration membranes. Desalination 1995, 102:301-311.
    • (1995) Desalination , vol.102 , pp. 301-311
    • Tansel, B.1    Regula, J.2    Shalewitz, R.3
  • 24
    • 0032790359 scopus 로고    scopus 로고
    • Laboratory evaluation of crude oil biodegradation with commercial or natural microbial inocula
    • Thouand G., Bauda P., Oudot J., Kirsch G., Sutton C., Vidalie J.F. Laboratory evaluation of crude oil biodegradation with commercial or natural microbial inocula. Can. J. Microbiol. 1999, 45:106-115.
    • (1999) Can. J. Microbiol. , vol.45 , pp. 106-115
    • Thouand, G.1    Bauda, P.2    Oudot, J.3    Kirsch, G.4    Sutton, C.5    Vidalie, J.F.6
  • 25
    • 0027528073 scopus 로고
    • Hydrocarbon biodegradation and hydrocarbonoclastic bacterial communities composition grown in seawater as a function of sodium chloride concentration
    • Bertrand J.C., Bianchi M., Mallah M.A., Acquaviva M., Mille G. Hydrocarbon biodegradation and hydrocarbonoclastic bacterial communities composition grown in seawater as a function of sodium chloride concentration. J. Esp. Mur. Biol. Ecol. 1993, 168:125-138.
    • (1993) J. Esp. Mur. Biol. Ecol. , vol.168 , pp. 125-138
    • Bertrand, J.C.1    Bianchi, M.2    Mallah, M.A.3    Acquaviva, M.4    Mille, G.5
  • 26
    • 77953149746 scopus 로고    scopus 로고
    • A proposed method modification for the determination of COD in saline waters
    • Freire D.D.C., Sant'Anna G.L. A proposed method modification for the determination of COD in saline waters. Environ. Technol. 2002, 19:243-247.
    • (2002) Environ. Technol. , vol.19 , pp. 243-247
    • Freire, D.D.C.1    Sant'Anna, G.L.2
  • 27
  • 29
    • 33748580947 scopus 로고    scopus 로고
    • Evaluation of artificial neural networks for modelling and optimization of medium composition with a genetic algorithm
    • Franco-Lara E., Link H., Weuster-Botz D. Evaluation of artificial neural networks for modelling and optimization of medium composition with a genetic algorithm. Process Biochem. 2006, 41:2200-2206.
    • (2006) Process Biochem. , vol.41 , pp. 2200-2206
    • Franco-Lara, E.1    Link, H.2    Weuster-Botz, D.3
  • 31
    • 0034564603 scopus 로고    scopus 로고
    • Artificial neural networks: fundamentals, computing, design, and application
    • Basheer I.A., Hajmeer M. Artificial neural networks: fundamentals, computing, design, and application. J. Microbiol. Methods 2000, 43:3-31.
    • (2000) J. Microbiol. Methods , vol.43 , pp. 3-31
    • Basheer, I.A.1    Hajmeer, M.2
  • 34
    • 10044229782 scopus 로고    scopus 로고
    • Lawrence Erlbaum Associates, Inc., Publishers, Mahwah, New Jersey, USA
    • Ye N. The Handbook of Data Mining 2003, Lawrence Erlbaum Associates, Inc., Publishers, Mahwah, New Jersey, USA.
    • (2003) The Handbook of Data Mining
    • Ye, N.1
  • 35
    • 79960162023 scopus 로고    scopus 로고
    • Improving the convergence of the backpropagation algorithm using local adaptive techniques
    • Zainuddin Z., Mahat N., Abu Hassan Y. Improving the convergence of the backpropagation algorithm using local adaptive techniques. Int. J. Comput. Intell. 2002, 1:79-82.
    • (2002) Int. J. Comput. Intell. , vol.1 , pp. 79-82
    • Zainuddin, Z.1    Mahat, N.2    Abu Hassan, Y.3
  • 36
    • 77949549405 scopus 로고    scopus 로고
    • A comparison between three neural network models for classification problems
    • Al-Daoud E. A comparison between three neural network models for classification problems. J. Artif. Intell. 2009, 2:56-64.
    • (2009) J. Artif. Intell. , vol.2 , pp. 56-64
    • Al-Daoud, E.1
  • 37
    • 0000400323 scopus 로고    scopus 로고
    • Survey of neural transfer functions
    • Duch W., Jankowski N. Survey of neural transfer functions. Neural Comput. Surv. 1999, 2:163-212.
    • (1999) Neural Comput. Surv. , vol.2 , pp. 163-212
    • Duch, W.1    Jankowski, N.2
  • 39
    • 0042525838 scopus 로고    scopus 로고
    • A constructive algorithm for training cooperative neural network ensembles
    • Islam M., Yao X., Murase K. A constructive algorithm for training cooperative neural network ensembles. IEEE Trans. Neural Netw. 2003, 14:820-834.
    • (2003) IEEE Trans. Neural Netw. , vol.14 , pp. 820-834
    • Islam, M.1    Yao, X.2    Murase, K.3
  • 40
    • 0034308330 scopus 로고    scopus 로고
    • Treatment of oil contaminated wastewater in a membrane bioreactor
    • Scholz W., Fuchs W. Treatment of oil contaminated wastewater in a membrane bioreactor. Water. Res. 2000, 34:3621-3629.
    • (2000) Water. Res. , vol.34 , pp. 3621-3629
    • Scholz, W.1    Fuchs, W.2
  • 41
    • 77954191495 scopus 로고    scopus 로고
    • A white paper describing produced water from production of crude oil
    • Natural gas, and coal bed methane,
    • J. Veil, M.G. Puder, D. Elcock, R.J.J. Redweik, A white paper describing produced water from production of crude oil, natural gas, and coal bed methane, , 2004. http://www.netl.doe.gov/publications/oil_pubs/prodwaterpaper.pdf.
    • (2004)
    • Veil, J.1    Puder, M.G.2    Elcock, D.3    Redweik, R.J.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.