메뉴 건너뛰기




Volumn 277, Issue 1-3, 2011, Pages 29-39

Multi-ionic nanofiltration of highly concentrated salt mixtures in the seawater range

Author keywords

Ionic separation; Multicomponent; Nanofiltration; Seawater; SEDE VCh

Indexed keywords

COUNTERIONS; DIELECTRIC CONSTANTS; DIVALENT IONS; EXPERIMENTAL OBSERVATION; IONIC COMPOSITION; IONIC SEPARATIONS; MEMBRANE CHARGE; MEMBRANE PARAMETERS; MEMBRANE PORES; MONOVALENT IONS; MONOVALENT SALT; MULTICOMPONENTS; NACL CONCENTRATION; SALT MIXTURES; SEDE-VCH;

EID: 79960171703     PISSN: 00119164     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.desal.2011.03.088     Document Type: Article
Times cited : (60)

References (43)
  • 2
    • 79960181219 scopus 로고    scopus 로고
    • Council Directive 98/83/EC of 3 November on the quality of water intended for human consumption., in.
    • Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption., in.
    • (1998)
  • 5
    • 67651045830 scopus 로고    scopus 로고
    • Investigating nanofiltration of multi-ionic solutions using the steric, electric and dielectric exclusion model
    • Bouranene S., Fievet P., Szymczyk A. Investigating nanofiltration of multi-ionic solutions using the steric, electric and dielectric exclusion model. Chem. Eng. Sci. 2009, 64:3789-3798.
    • (2009) Chem. Eng. Sci. , vol.64 , pp. 3789-3798
    • Bouranene, S.1    Fievet, P.2    Szymczyk, A.3
  • 6
    • 48149087420 scopus 로고    scopus 로고
    • Modelling the separation by nanofiltration of a multi-ionic solution relevant to an industrial process
    • Cavaco Morão A.I., Szymczyk A., Fievet P., Brites Alves A.M. Modelling the separation by nanofiltration of a multi-ionic solution relevant to an industrial process. J. Membr. Sci. 2008, 322:320-330.
    • (2008) J. Membr. Sci. , vol.322 , pp. 320-330
    • Cavaco Morão, A.I.1    Szymczyk, A.2    Fievet, P.3    Brites Alves, A.M.4
  • 7
    • 33745728013 scopus 로고    scopus 로고
    • Modeling the separation performance of nanofiltration membranes for the mixed salts solution
    • Wang D.-X., Wang X.-L., Tomi Y., Ando M., Shintani T. Modeling the separation performance of nanofiltration membranes for the mixed salts solution. J. Membr. Sci. 2006, 280:734-743.
    • (2006) J. Membr. Sci. , vol.280 , pp. 734-743
    • Wang, D.-X.1    Wang, X.-L.2    Tomi, Y.3    Ando, M.4    Shintani, T.5
  • 8
    • 33747880783 scopus 로고    scopus 로고
    • Effect of salt mixture concentration on fractionation with NF membranes
    • Tanninen J., Mänttäri M., Nyström M. Effect of salt mixture concentration on fractionation with NF membranes. J. Membr. Sci. 2006, 283:57-64.
    • (2006) J. Membr. Sci. , vol.283 , pp. 57-64
    • Tanninen, J.1    Mänttäri, M.2    Nyström, M.3
  • 9
    • 72049127783 scopus 로고    scopus 로고
    • Influence of coion and counterion size on multi-ionic solution nanofiltration
    • Sabaté J., Labanda J., Llorens J. Influence of coion and counterion size on multi-ionic solution nanofiltration. J. Membr. Sci. 2009, 345:298-304.
    • (2009) J. Membr. Sci. , vol.345 , pp. 298-304
    • Sabaté, J.1    Labanda, J.2    Llorens, J.3
  • 10
    • 3042679237 scopus 로고    scopus 로고
    • Permeation of mixed-salt solutions with commercial and pore-filled nanofiltration membranes: membrane charge inversion phenomena
    • Garcia-Aleman J., Dickson J.M. Permeation of mixed-salt solutions with commercial and pore-filled nanofiltration membranes: membrane charge inversion phenomena. J. Membr. Sci. 2004, 239:163-172.
    • (2004) J. Membr. Sci. , vol.239 , pp. 163-172
    • Garcia-Aleman, J.1    Dickson, J.M.2
  • 11
    • 0036531124 scopus 로고    scopus 로고
    • Linearized transport model for nanofiltration: development and assessment
    • Bowen W.R., Julian S.W., Paul M.W. Linearized transport model for nanofiltration: development and assessment. AlChE J. 2002, 48:760-773.
    • (2002) AlChE J. , vol.48 , pp. 760-773
    • Bowen, W.R.1    Julian, S.W.2    Paul, M.W.3
  • 12
    • 70349226649 scopus 로고    scopus 로고
    • Transport of salt mixtures through nanofiltration membranes: numerical identification of electric and dielectric contributions
    • Déon S., Dutournié P., Limousy L., Bourseau P. Transport of salt mixtures through nanofiltration membranes: numerical identification of electric and dielectric contributions. Sep. Purif. Technol. 2009, 69:225-233.
    • (2009) Sep. Purif. Technol. , vol.69 , pp. 225-233
    • Déon, S.1    Dutournié, P.2    Limousy, L.3    Bourseau, P.4
  • 16
    • 34748880653 scopus 로고    scopus 로고
    • Osmotic and activity coefficients of 1:1, 1:3, 1:4, 2:1, 2:2, 3:1, 3:2 and 4:1 strong electrolytes at 298.15K using a modified Pitzer equation
    • Perez-Villasenor F., Bedolla-Hernandez M.L., Iglesias-Silva G.A. Osmotic and activity coefficients of 1:1, 1:3, 1:4, 2:1, 2:2, 3:1, 3:2 and 4:1 strong electrolytes at 298.15K using a modified Pitzer equation. Ind. Eng. Chem. Res. 2007, 46:6366-6374.
    • (2007) Ind. Eng. Chem. Res. , vol.46 , pp. 6366-6374
    • Perez-Villasenor, F.1    Bedolla-Hernandez, M.L.2    Iglesias-Silva, G.A.3
  • 17
    • 0242585501 scopus 로고    scopus 로고
    • Prediction of osmotic and activity coefficients using a modified Pitzer equation for multicomponent strong electrolyte systems at 298K
    • Perez-Villasenor F., Iglesias-Silva G.A., Hall K.R. Prediction of osmotic and activity coefficients using a modified Pitzer equation for multicomponent strong electrolyte systems at 298K. Ind. Eng. Chem. Res. 2003, 42:1087-1092.
    • (2003) Ind. Eng. Chem. Res. , vol.42 , pp. 1087-1092
    • Perez-Villasenor, F.1    Iglesias-Silva, G.A.2    Hall, K.R.3
  • 18
    • 0037028972 scopus 로고    scopus 로고
    • Osmotic and activity coefficients using a modified Pitzer equation for strong electrolytes 1:1 and 1:2 at 298.15K
    • Perez-Villasenor F., Iglesias-Silva G.A., Hall K.R. Osmotic and activity coefficients using a modified Pitzer equation for strong electrolytes 1:1 and 1:2 at 298.15K. Ind. Eng. Chem. Res. 2002, 41:1031-1037.
    • (2002) Ind. Eng. Chem. Res. , vol.41 , pp. 1031-1037
    • Perez-Villasenor, F.1    Iglesias-Silva, G.A.2    Hall, K.R.3
  • 19
    • 84949329751 scopus 로고
    • Osmotic coefficients and mean activity coefficients of uni-univalent electrolytes in water at 25[degree]C
    • Walter J.H., Yung-Chi W. Osmotic coefficients and mean activity coefficients of uni-univalent electrolytes in water at 25[degree]C. J. Physical Chemical Reference Data 1972, 1:1047-1100.
    • (1972) J. Physical Chemical Reference Data , vol.1 , pp. 1047-1100
    • Walter, J.H.1    Yung-Chi, W.2
  • 20
    • 0031105383 scopus 로고    scopus 로고
    • Modeling osmotic pressures for aqueous solutions for 2-1 and 2-2 electrolytes
    • Van Gauwbergen D., Baeyens J., Creemers C. Modeling osmotic pressures for aqueous solutions for 2-1 and 2-2 electrolytes. Desalination 1997, 109:57-65.
    • (1997) Desalination , vol.109 , pp. 57-65
    • Van Gauwbergen, D.1    Baeyens, J.2    Creemers, C.3
  • 21
    • 33846850321 scopus 로고    scopus 로고
    • Prediction of permeate fluxes and rejections of highly concentrated salts in nanofiltration membranes
    • Mohammad A.W., Hilal N., Al-Zoubi H., Darwish N.A. Prediction of permeate fluxes and rejections of highly concentrated salts in nanofiltration membranes. J. Membr. Sci. 2007, 289:40-50.
    • (2007) J. Membr. Sci. , vol.289 , pp. 40-50
    • Mohammad, A.W.1    Hilal, N.2    Al-Zoubi, H.3    Darwish, N.A.4
  • 22
    • 0037129068 scopus 로고    scopus 로고
    • Modelling of membrane nanofiltration-pore size distribution effects
    • Bowen W.R., Welfoot J.S. Modelling of membrane nanofiltration-pore size distribution effects. Chem. Eng. Sci. 2002, 57:1393-1407.
    • (2002) Chem. Eng. Sci. , vol.57 , pp. 1393-1407
    • Bowen, W.R.1    Welfoot, J.S.2
  • 23
    • 0036530850 scopus 로고    scopus 로고
    • Modelling the performance of membrane nanofiltration-critical assessment and model development
    • Bowen W.R., Welfoot J.S. Modelling the performance of membrane nanofiltration-critical assessment and model development. Chem. Eng. Sci. 2002, 57:1121-1137.
    • (2002) Chem. Eng. Sci. , vol.57 , pp. 1121-1137
    • Bowen, W.R.1    Welfoot, J.S.2
  • 24
    • 33646373196 scopus 로고    scopus 로고
    • Transport properties and electrokinetic characterization of an amphoteric nanofilter
    • Szymczyk A., Sbai M., Fievet P., Vidonne A. Transport properties and electrokinetic characterization of an amphoteric nanofilter. Langmuir 2006, 22:3910-3919.
    • (2006) Langmuir , vol.22 , pp. 3910-3919
    • Szymczyk, A.1    Sbai, M.2    Fievet, P.3    Vidonne, A.4
  • 25
    • 0043068216 scopus 로고    scopus 로고
    • Nanofiltration modeling: the role of dielectric exclusion in membrane characterization
    • Bandini S., Vezzani D. Nanofiltration modeling: the role of dielectric exclusion in membrane characterization. Chem. Eng. Sci. 2003, 58:3303-3326.
    • (2003) Chem. Eng. Sci. , vol.58 , pp. 3303-3326
    • Bandini, S.1    Vezzani, D.2
  • 26
    • 0030615431 scopus 로고    scopus 로고
    • Characterisation of nanofiltration membranes for predictive purposes - use of salts, uncharged solutes and atomic force microscopy
    • Bowen W.R., Mohammad A.W., Hilal N. Characterisation of nanofiltration membranes for predictive purposes - use of salts, uncharged solutes and atomic force microscopy. J. Membr. Sci. 1997, 126:91-105.
    • (1997) J. Membr. Sci. , vol.126 , pp. 91-105
    • Bowen, W.R.1    Mohammad, A.W.2    Hilal, N.3
  • 27
    • 33749223814 scopus 로고
    • Reevaluation of the Born model of ion hydration
    • Rashin A.A., Honig B. Reevaluation of the Born model of ion hydration. J. Phys. Chem. 1985, 89:5588-5593.
    • (1985) J. Phys. Chem. , vol.89 , pp. 5588-5593
    • Rashin, A.A.1    Honig, B.2
  • 29
    • 33750308609 scopus 로고    scopus 로고
    • Hindrance factors for diffusion and convection in pores
    • Dechadilok P., Deen W.M. Hindrance factors for diffusion and convection in pores. Ind. Eng. Chem. Res. 2006, 45:6953-6959.
    • (2006) Ind. Eng. Chem. Res. , vol.45 , pp. 6953-6959
    • Dechadilok, P.1    Deen, W.M.2
  • 30
    • 63149169854 scopus 로고    scopus 로고
    • Relevance of hindrance factors and hydrodynamic pressure gradient in the modelization of the transport of neutral solutes across nanofiltration membranes
    • Silva V., Prádanos P., Palacio L., Calvo J.I., Hernández A. Relevance of hindrance factors and hydrodynamic pressure gradient in the modelization of the transport of neutral solutes across nanofiltration membranes. Chem. Eng. J. 2009, 149:78-86.
    • (2009) Chem. Eng. J. , vol.149 , pp. 78-86
    • Silva, V.1    Prádanos, P.2    Palacio, L.3    Calvo, J.I.4    Hernández, A.5
  • 33
    • 34547923731 scopus 로고    scopus 로고
    • Prediction of the concentration polarization in the nanofiltration/reverse osmosis of dilute multi-ionic solutions
    • Geraldes V., Afonso M.D. Prediction of the concentration polarization in the nanofiltration/reverse osmosis of dilute multi-ionic solutions. J. Membr. Sci. 2007, 300:20-27.
    • (2007) J. Membr. Sci. , vol.300 , pp. 20-27
    • Geraldes, V.1    Afonso, M.D.2
  • 34
    • 0024757625 scopus 로고
    • Mass transfer coefficients in cross-flow ultrafiltration
    • van den Berg G.B., Rácz I.G., Smolders C.A. Mass transfer coefficients in cross-flow ultrafiltration. J. Membr. Sci. 1989, 47:25-51.
    • (1989) J. Membr. Sci. , vol.47 , pp. 25-51
    • van den Berg, G.B.1    Rácz, I.G.2    Smolders, C.A.3
  • 35
    • 56649117367 scopus 로고    scopus 로고
    • A numerical and experimental study of mass transfer in spacer-filled channels: Effects of spacer geometrical characteristics and Schmidt number
    • Koutsou C.P., Yiantsios S.G., Karabelas A.J. A numerical and experimental study of mass transfer in spacer-filled channels: Effects of spacer geometrical characteristics and Schmidt number. J. Membr. Sci. 2009, 326:234-251.
    • (2009) J. Membr. Sci. , vol.326 , pp. 234-251
    • Koutsou, C.P.1    Yiantsios, S.G.2    Karabelas, A.J.3
  • 36
    • 33749494525 scopus 로고    scopus 로고
    • Generalized mass-transfer correction factor for nanofiltration and reverse osmosis
    • Vítor G., Maria Diná A. Generalized mass-transfer correction factor for nanofiltration and reverse osmosis. AlChE J. 2006, 52:3353-3362.
    • (2006) AlChE J. , vol.52 , pp. 3353-3362
    • Vítor, G.1    Maria Diná, A.2
  • 37
    • 38749089798 scopus 로고    scopus 로고
    • Prediction of physical properties of nanofiltration membranes using experiment and theoretical models
    • Hussain A.A., Nataraj S.K., Abashar M.E.E., Al-Mutaz I.S., Aminabhavi T.M. Prediction of physical properties of nanofiltration membranes using experiment and theoretical models. J. Membr. Sci. 2008, 310:321-336.
    • (2008) J. Membr. Sci. , vol.310 , pp. 321-336
    • Hussain, A.A.1    Nataraj, S.K.2    Abashar, M.E.E.3    Al-Mutaz, I.S.4    Aminabhavi, T.M.5
  • 38
    • 1842813565 scopus 로고    scopus 로고
    • Modelling of nanofiltration in softening water
    • Wesolowska K., Koter S., Bodzek M. Modelling of nanofiltration in softening water. Desalination 2004, 162:137-151.
    • (2004) Desalination , vol.162 , pp. 137-151
    • Wesolowska, K.1    Koter, S.2    Bodzek, M.3
  • 40
    • 79960159332 scopus 로고    scopus 로고
    • Dielectric properties of electrolyte solutions in polymeric nanofiltration membranes
    • Desalin. Water Treat., (Accepted for publication).
    • M. Montalvillo, V. Silva, L. Palacio, A. Hernández, P. Prádanos., Dielectric properties of electrolyte solutions in polymeric nanofiltration membranes, Desalin. Water Treat., (Accepted for publication).
    • Montalvillo, M.1    Silva, V.2    Palacio, L.3    Hernández, A.4    Prádanos, P.5
  • 41
    • 71249156864 scopus 로고    scopus 로고
    • On the prediction of permeate flux for nanofiltration of concentrated aqueous solutions with thin-film composite polyamide membranes
    • Rodrigues C., Cavaco Morão A.I., de Pinho M.N., Geraldes V. On the prediction of permeate flux for nanofiltration of concentrated aqueous solutions with thin-film composite polyamide membranes. J. Membr. Sci. 2010, 346:1-7.
    • (2010) J. Membr. Sci. , vol.346 , pp. 1-7
    • Rodrigues, C.1    Cavaco Morão, A.I.2    de Pinho, M.N.3    Geraldes, V.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.