메뉴 건너뛰기




Volumn 27, Issue 14, 2011, Pages 1979-1985

A statistical framework for biomarker discovery in metabolomic time course data

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGICAL MARKER;

EID: 79960150258     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btr289     Document Type: Article
Times cited : (37)

References (31)
  • 1
    • 0036685889 scopus 로고    scopus 로고
    • Batch statistical processing of 1H NMR-derived urinary spectral data
    • Antti,H. et al. (2002) Batch statistical processing of 1H NMR-derived urinary spectral data. J. Chemometrics, 16, 461-468.
    • (2002) J. Chemometrics , vol.16 , pp. 461-468
    • Antti, H.1
  • 2
    • 0042838381 scopus 로고    scopus 로고
    • Comparing the continuous representation of time-series expression profiles to identify differentially expressed genes
    • Bar-Joseph,Z. et al. (2003) Comparing the continuous representation of time-series expression profiles to identify differentially expressed genes. Proc. Natl Acad. Sci. USA, 100, 10146-10151.
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 10146-10151
    • Bar-Joseph, Z.1
  • 3
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini,Y. and Hochberg,Y. (1995) Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc., 57, 289-300.
    • (1995) J. R. Stat. Soc. , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 4
    • 20144388102 scopus 로고    scopus 로고
    • Comparative metabonomics of differential hydrazine toxicity in the rat and mouse
    • Bollard,M.E. et al. (2005) Comparative metabonomics of differential hydrazine toxicity in the rat and mouse. Toxicol. Appl. Pharmacol., 204, 135-151.
    • (2005) Toxicol. Appl. Pharmacol. , vol.204 , pp. 135-151
    • Bollard, M.E.1
  • 6
    • 50949119801 scopus 로고    scopus 로고
    • Pointwise testing with functional data using the Westfall-Young randomization method
    • Cox,D.D. and Lee,J.S. (2008) Pointwise testing with functional data using the Westfall-Young randomization method. Biometrika, 95, 621-634.
    • (2008) Biometrika , vol.95 , pp. 621-634
    • Cox, D.D.1    Lee, J.S.2
  • 7
    • 4544317990 scopus 로고    scopus 로고
    • An ANOVA test for functional data
    • Cuevas,A. et al. (2004) An ANOVA test for functional data. Comput. Stat. Data Anal., 47, 111-122.
    • (2004) Comput. Stat. Data Anal. , vol.47 , pp. 111-122
    • Cuevas, A.1
  • 8
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster,A.P. et al. (1977) Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B, 39, 1-38.
    • (1977) J. R. Stat. Soc. Ser. B , vol.39 , pp. 1-38
    • Dempster, A.P.1
  • 10
    • 70349816735 scopus 로고    scopus 로고
    • Bioinformatic methods in NMR-based metabolic profiling
    • Ebbels,T. and Cavill,R. (2009) Bioinformatic methods in NMR-based metabolic profiling. Progr. Nucl. Magn. Reson. Spectrosc., 55, 361-374.
    • (2009) Progr. Nucl. Magn. Reson. Spectrosc. , vol.55 , pp. 361-374
    • Ebbels, T.1    Cavill, R.2
  • 11
    • 34748839546 scopus 로고    scopus 로고
    • Proposed minimum reporting standards for data analysis in metabolomics
    • Goodacre,R. et al. (2007) Proposed minimum reporting standards for data analysis in metabolomics. Metabolomics, 3, 231-241.
    • (2007) Metabolomics , vol.3 , pp. 231-241
    • Goodacre, R.1
  • 13
    • 0036185675 scopus 로고    scopus 로고
    • Functional mixed effects models
    • Guo,W. (2002) Functional mixed effects models. Biometrics, 58, 121-128.
    • (2002) Biometrics , vol.58 , pp. 121-128
    • Guo, W.1
  • 14
    • 0001354983 scopus 로고    scopus 로고
    • Smoothing parameter selection in nonparametric regression using an improved akaike information criterion
    • Hurvich,C.M. et al. (1998) Smoothing parameter selection in nonparametric regression using an improved akaike information criterion. J. R. Stat. Soc. Ser. B, 60, 271-293.
    • (1998) J. R. Stat. Soc. Ser. B , vol.60 , pp. 271-293
    • Hurvich, C.M.1
  • 15
    • 26944489574 scopus 로고    scopus 로고
    • The Consortium for Metabonomic Toxicology (COMET): aims, activities and achievements
    • Lindon,J.C. et al. (2005) The Consortium for Metabonomic Toxicology (COMET): aims, activities and achievements. Pharmacogenomics, 6, 691-699.
    • (2005) Pharmacogenomics , vol.6 , pp. 691-699
    • Lindon, J.C.1
  • 16
    • 0037339264 scopus 로고    scopus 로고
    • Clustering of time-course gene expression data using a mixedeffects model with B-splines
    • Luan,Y. and Li,H. (2003) Clustering of time-course gene expression data using a mixedeffects model with B-splines. Bioinformatics, 19, 474-482.
    • (2003) Bioinformatics , vol.19 , pp. 474-482
    • Luan, Y.1    Li, H.2
  • 17
    • 33644855951 scopus 로고    scopus 로고
    • A data-driven clustering method for time course gene expression data
    • Ma,P. et al. (2006) A data-driven clustering method for time course gene expression data. Nucleic Acids Res., 34, 1261-1269.
    • (2006) Nucleic Acids Res. , vol.34 , pp. 1261-1269
    • Ma, P.1
  • 18
    • 0000238336 scopus 로고
    • Asimplex method for function minimization
    • Nelder,J.A. and Mead,R. (1965)Asimplex method for function minimization. Comput. J., 7, 308-313.
    • (1965) Comput. J. , vol.7 , pp. 308-313
    • Nelder, J.A.1    Mead, R.2
  • 19
    • 0034861361 scopus 로고    scopus 로고
    • Metabonomic investigations into hydrazine toxicity in the rat
    • Nicholls,A.W. et al. (2001) Metabonomic investigations into hydrazine toxicity in the rat. Chem. Res. Toxicol., 14, 975-987.
    • (2001) Chem. Res. Toxicol. , vol.14 , pp. 975-987
    • Nicholls, A.W.1
  • 20
    • 0036463681 scopus 로고    scopus 로고
    • Metabonomics: a platform for studying drug toxicity and gene function
    • Nicholson,J.K. et al. (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat. Rev. Drug Discov., 1, 153-161.
    • (2002) Nat. Rev. Drug Discov. , vol.1 , pp. 153-161
    • Nicholson, J.K.1
  • 21
    • 0032694577 scopus 로고    scopus 로고
    • Metabonomics: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data
    • Nicholson,J. et al. (1999) 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 29, 1181.
    • (1999) Xenobiotica , vol.29 , pp. 1181
    • Nicholson, J.1
  • 22
    • 33847302479 scopus 로고    scopus 로고
    • Accurate ranking of differentially expressed genes by a distribution-free shrinkage approach
    • Opgen-Rhein,R. and Strimmer,K. (2007) Accurate ranking of differentially expressed genes by a distribution-free shrinkage approach. Stat. Appl. Genet. Mol. Biol., 6, 9.
    • (2007) Stat. Appl. Genet. Mol. Biol. , vol.6 , pp. 9
    • Opgen-Rhein, R.1    Strimmer, K.2
  • 23
    • 0035160371 scopus 로고    scopus 로고
    • A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations
    • Raamsdonk,L.M. et al. (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat. Biotechnol., 19, 45-50.
    • (2001) Nat. Biotechnol. , vol.19 , pp. 45-50
    • Raamsdonk, L.M.1
  • 25
    • 84972496336 scopus 로고
    • That BLUP is a good thing: the estimation of random effects
    • Robinson,G.K. (1991) That BLUP is a good thing: the estimation of random effects. Stat. Sci., 6, 15-32.
    • (1991) Stat. Sci. , vol.6 , pp. 15-32
    • Robinson, G.K.1
  • 26
    • 77949284307 scopus 로고    scopus 로고
    • Dynamic metabolomic data analysis: a tutorial review
    • Smilde,A.K. et al. (2010) Dynamic metabolomic data analysis: a tutorial review. Metabolomics, 6, 3-17.
    • (2010) Metabolomics , vol.6 , pp. 3-17
    • Smilde, A.K.1
  • 27
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical Bayes methods for assessing differential expression in microarray experiments
    • Smyth,G.K. (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol., 3, 3.
    • (2004) Stat. Appl. Genet. Mol. Biol. , vol.3 , pp. 3
    • Smyth, G.K.1
  • 28
    • 39049186612 scopus 로고    scopus 로고
    • A gentle guide to the analysis of metabolomic data
    • Steuer,R. et al. (2007) A gentle guide to the analysis of metabolomic data. Methods Mol. Biol., 358, 105-126.
    • (2007) Methods Mol. Biol. , vol.358 , pp. 105-126
    • Steuer, R.1
  • 29
    • 24644519314 scopus 로고    scopus 로고
    • Significance analysis of time course microarray experiments
    • Storey,J.D. et al. (2005) Significance analysis of time course microarray experiments. Proc. Natl Acad. Sci. USA, 102, 12837-12842.
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , pp. 12837-12842
    • Storey, J.D.1
  • 30
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis of microarrays applied to the ionizing radiation response
    • Tusher,V.G. et al. (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl Acad. Sci. USA, 98, 5116-5121.
    • (2001) Proc. Natl Acad. Sci. USA , vol.98 , pp. 5116-5121
    • Tusher, V.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.