메뉴 건너뛰기




Volumn 6804 LNAI, Issue , 2011, Pages 290-299

Batch weighted ensemble for mining data streams with concept drift

Author keywords

[No Author keywords available]

Indexed keywords

CONCEPT DRIFTS; DATA SETS; DATA STREAM; DECISION ATTRIBUTE; DRIFT DETECTORS; ENSEMBLE CLASSIFIERS; EVALUATION MEASURES; PROCESSING TIME;

EID: 79960140507     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-21916-0_32     Document Type: Conference Paper
Times cited : (13)

References (13)
  • 3
    • 79957890255 scopus 로고    scopus 로고
    • Master's thesis supervised by J.Stefanowski, Poznan University of Technology, Poznań, Poland
    • Brzezinski, D.: Mining data streams with concept drift. Master's thesis supervised by J.Stefanowski, Poznan University of Technology, Poznań, Poland (2010)
    • (2010) Mining Data Streams with Concept Drift
    • Brzezinski, D.1
  • 5
    • 79957926252 scopus 로고    scopus 로고
    • Knowledge discovery from data streams
    • Gama, J.: Knowledge Discovery from Data Streams. CRC (2010)
    • (2010) CRC
    • Gama, J.1
  • 6
    • 35048891979 scopus 로고    scopus 로고
    • Classifier ensembles for changing environments
    • Roli, F., Kittler, J., Windeatt, T. (eds.) MCS 2004. Springer, Heidelberg
    • Kuncheva, L.I.: Classifier Ensembles for Changing Environments. In: Roli, F., Kittler, J., Windeatt, T. (eds.) MCS 2004. LNCS, vol. 3077, pp. 1-15. Springer, Heidelberg (2004)
    • (2004) LNCS , vol.3077 , pp. 1-15
    • Kuncheva, L.I.1
  • 7
    • 70349310717 scopus 로고    scopus 로고
    • Classifier ensembles for detecting concept change in streaming data: Overview and perspectives
    • Greece
    • Kuncheva, L.I.: Classifier ensembles for detecting concept change in streaming data: Overview and perspectives. In: Proceedings 2nd Workshop SUEMA 2008 (ECAI 2008), Greece, pp. 5-10 (2008)
    • (2008) Proceedings 2nd Workshop SUEMA 2008 (ECAI 2008) , pp. 5-10
    • Kuncheva, L.I.1
  • 10
    • 77952415079 scopus 로고    scopus 로고
    • Mining concept-drifting data streams using ensemble classifiers
    • Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble classifiers. In: Proceedings ACM SIGKDD, pp. 226-235 (2003)
    • (2003) Proceedings ACM SIGKDD , pp. 226-235
    • Wang, H.1    Fan, W.2    Yu, P.S.3    Han, J.4
  • 11
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Machine Learning 23, 69-101 (1996) (Pubitemid 126737384)
    • (1996) Machine Learning , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1
  • 13
    • 77951189369 scopus 로고    scopus 로고
    • Mining data streams with labeled and unlabeled training examples
    • Perner, P. (ed.) ICDM 2009. Springer, Heidelberg
    • Zhang, P., Zhu, X., Guo, L.: Mining Data Streams with Labeled and Unlabeled Training Examples. In: Perner, P. (ed.) ICDM 2009. LNCS, vol. 5633, pp. 627-636. Springer, Heidelberg (2009)
    • (2009) LNCS , vol.5633 , pp. 627-636
    • Zhang, P.1    Zhu, X.2    Guo, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.