메뉴 건너뛰기




Volumn 1, Issue , 2011, Pages 329-336

All about microtext: A working definition and a survey of current microtext research within artificial intelligence and natural language processing

Author keywords

Information extraction; Microtext; Natural language processing; Semi structured data; Sentiment analysis; Text classification; Topic summarization

Indexed keywords

INFORMATION EXTRACTION; MICROTEXT; NATURAL LANGUAGE PROCESSING; SEMI STRUCTURED DATA; SENTIMENT ANALYSIS; TEXT CLASSIFICATION; TOPIC SUMMARIZATION;

EID: 79960134367     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (25)

References (29)
  • 3
  • 5
    • 65249172016 scopus 로고    scopus 로고
    • Information Seeking Can Be Social
    • March, 2009. IEEE
    • Chi, E. 2009 "Information Seeking Can Be Social," Computer, pp. 42-46, March, 2009. IEEE
    • (2009) Computer , pp. 42-46
    • Chi, E.1
  • 9
    • 0344229953 scopus 로고
    • A new readability yardstick
    • Flesch, R. (1948); A new readability yardstick, Journal of Applied Psychology, Vol. 32, pp. 221-233.
    • (1948) Journal of Applied Psychology , vol.32 , pp. 221-233
    • Flesch, R.1
  • 10
    • 79960149516 scopus 로고    scopus 로고
    • Exploiting the Unique Characteristics of Tweets for Sentiment Analysis
    • Stanford
    • Go, A., Bhayani, R., and Huang, L. 2010. Exploiting the Unique Characteristics of Tweets for Sentiment Analysis. CS224N Project Report, Stanford.
    • (2010) CS224N Project Report
    • Go, A.1    Bhayani, R.2    Huang, L.3
  • 17
    • 71749117714 scopus 로고    scopus 로고
    • An empirical study of corpus-based response automation methods for an e-mail-based help-desk domain
    • Dec. 2009
    • Marom, Y. and Zukerman, I. 2009. An empirical study of corpus-based response automation methods for an e-mail-based help-desk domain. Computational Linguist. 35, 4 (Dec. 2009), 597-635
    • (2009) Computational Linguist , vol.35 , Issue.4 , pp. 597-635
    • Marom, Y.1    Zukerman, I.2
  • 20
    • 57349117605 scopus 로고    scopus 로고
    • Learning to classify short and sparse text & web with hidden topics from large-scale data collections
    • New York, NY, USA. ACM
    • Phan, X.-H., et al. (2008). Learning to classify short and sparse text & web with hidden topics from large-scale data collections. In WWW '08: Proceeding of the 17th international conference on World Wide Web, pp. 91-100, New York, NY, USA. ACM.
    • (2008) WWW '08: Proceeding of the 17th International Conference on World Wide Web , pp. 91-100
    • Phan, X.-H.1
  • 22
    • 84859916751 scopus 로고    scopus 로고
    • Using emoticons to reduce dependency in machine learning techniques for sentiment classification
    • ACL
    • Read, J. 2005. Using emoticons to reduce dependency in machine learning techniques for sentiment classification. In Proceedings of the ACL Student Research Workshop ACL.
    • (2005) Proceedings of the ACL Student Research Workshop
    • Read, J.1
  • 27
    • 85052329994 scopus 로고    scopus 로고
    • Predicting Elections with Twitter: Predicting elections with Twitter: What 140 characters reveal about political sentiment
    • AAAI, Washington, D.C., 2010
    • Tumasjan, A., et al. 2010. Predicting Elections with Twitter: Predicting elections with Twitter: What 140 characters reveal about political sentiment. In International AAAI Conference on Weblogs and Social Media, AAAI, Washington, D.C., 2010.
    • (2010) International AAAI Conference on Weblogs and Social Media
    • Tumasjan, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.