-
2
-
-
32544451561
-
Why are plastid genomes retained in non-photosynthetic organisms?
-
DOI 10.1016/j.tplants.2005.12.004, PII S136013850500302X
-
Barbrook AC, Howe CJ, Purton S. 2006. Why are plastid genes retained in non-photosynthetic organisms? Trends Plant Sci. 11:101-108. (Pubitemid 43238421)
-
(2006)
Trends in Plant Science
, vol.11
, Issue.2
, pp. 101-108
-
-
Barbrook, A.C.1
Howe, C.J.2
Purton, S.3
-
3
-
-
77955418028
-
Mitochondrial DNA sequences are present inside nuclear DNA in rat tissues and increase with age
-
Caro P, et al. 2010. Mitochondrial DNA sequences are present inside nuclear DNA in rat tissues and increase with age. Mitochondrion. 10:479-486.
-
(2010)
Mitochondrion
, vol.10
, pp. 479-486
-
-
Caro, P.1
-
4
-
-
78349232824
-
The migration of mitochondrial DNA fragments to the nucleus affects the chronological aging process of Saccharomyces cerevisiae
-
Cheng X, Ivessa AS. 2010. The migration of mitochondrial DNA fragments to the nucleus affects the chronological aging process of Saccharomyces cerevisiae. Aging Cell. 9:919-923.
-
(2010)
Aging Cell
, vol.9
, pp. 919-923
-
-
Cheng, X.1
Ivessa, A.S.2
-
5
-
-
4143093598
-
A genome phylogeny for mitochondria among -proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes
-
DOI 10.1093/molbev/msh160
-
Esser C, et al. 2004. A genome phylogeny for mitochondria among alpha-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. Mol Biol Evol. 21:1643-1660. (Pubitemid 39096881)
-
(2004)
Molecular Biology and Evolution
, vol.21
, Issue.9
, pp. 1643-1660
-
-
Esser, C.1
Ahmadinejad, N.2
Wiegand, C.3
Rotte, C.4
Sebastiani, F.5
Gelius-Dietrich, G.6
Henze, K.7
Kretschmann, E.8
Richly, E.9
Leister, D.10
Bryant, D.11
Steel, M.A.12
Lockhart, P.J.13
Penny, D.14
Martin, W.15
-
6
-
-
77649210966
-
Molecular poltergeists: Mitochondrial DNA copies (numts) in sequenced nuclear genomes
-
Hazkani-Covo E, Zeller RM, Martin W. 2010. Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet. 6(2):e1000834.
-
(2010)
PLoS Genet
, vol.6
, Issue.2
-
-
Hazkani-Covo, E.1
Zeller, R.M.2
Martin, W.3
-
7
-
-
34548768028
-
Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes
-
Hotopp JCD, et al. 2007.Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science. 317:1753-1756.
-
(2007)
Science
, vol.317
, pp. 1753-1756
-
-
Hotopp, J.C.D.1
-
8
-
-
74549210085
-
Phylogenetic distributions and histories of proteins involved in anaerobic pyruvate metabolism in eukaryotes
-
Hug LA, Stechmann A, Roger AJ. 2010. Phylogenetic distributions and histories of proteins involved in anaerobic pyruvate metabolism in eukaryotes. Mol Biol Evol. 27:311-324.
-
(2010)
Mol Biol Evol
, vol.27
, pp. 311-324
-
-
Hug, L.A.1
Stechmann, A.2
Roger, A.J.3
-
9
-
-
78649635768
-
Intermediary metabolism in protists: A sequencebased view of facultative anaerobic metabolism in evolutionarily diverse eukaryotes
-
Ginger ML, et al. 2010. Intermediary metabolism in protists: a sequencebased view of facultative anaerobic metabolism in evolutionarily diverse eukaryotes. Protist. 161:642-671.
-
(2010)
Protist
, vol.161
, pp. 642-671
-
-
Ginger, M.L.1
-
10
-
-
45849089569
-
Massive horizontal gene transfer in bdelloid rotifers
-
DOI 10.1126/science.1156407
-
Gladyshev EA, Meselson M, Arkhipova IR. 2008. Massive horizontal gene transfer in Bdelloid rotifers. Science. 320:1210-1213. (Pubitemid 351929508)
-
(2008)
Science
, vol.320
, Issue.5880
, pp. 1210-1213
-
-
Gladyshev, E.A.1
Meselson, M.2
Arkhipova, I.R.3
-
11
-
-
58249116640
-
Quantification of Wolbachia copy number in Trichogramma eggs (Hymenoptera: Trichogrammatidae): Lysozyme treatment significantly improves total gene yield from the Gram-negative bacterium
-
Jeong G, Stouthamer R. 2009. Quantification of Wolbachia copy number in Trichogramma eggs (Hymenoptera: trichogrammatidae): lysozyme treatment significantly improves total gene yield from the Gram-negative bacterium. Entomol Res. 39:66-69.
-
(2009)
Entomol Res
, vol.39
, pp. 66-69
-
-
Jeong, G.1
Stouthamer, R.2
-
12
-
-
78449233935
-
Pervasive cryptic epistasis in molecular evolution
-
Lunzer M, Golding GB, Dean AM. 2010. Pervasive cryptic epistasis in molecular evolution. PLoS Genet. 6(10):e1001162.
-
(2010)
PLoS Genet
, vol.6
, Issue.10
-
-
Lunzer, M.1
Golding, G.B.2
Dean, A.M.3
-
13
-
-
48249121918
-
The ancestral symbiont sensor kinase CSK links photosynthesis with gene expression in chloroplasts
-
Puthiyaveetil S, et al. 2008. The ancestral symbiont sensor kinase CSK links photosynthesis with gene expression in chloroplasts. Proc Natl Acad Sci U S A. 105:10061-10066.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 10061-10066
-
-
Puthiyaveetil, S.1
-
14
-
-
75249104662
-
Wolbachia: More than just a bug in insects genitals
-
Saridaki A, Bourtzis K. 2010. Wolbachia: more than just a bug in insects genitals. Curr Opin Microbiol. 13:67-72.
-
(2010)
Curr Opin Microbiol
, vol.13
, pp. 67-72
-
-
Saridaki, A.1
Bourtzis, K.2
-
15
-
-
77953772238
-
Sigma factor phosphorylation in the photosynthetic control of photosystem stoichiometry
-
Shimizu M, et al. 2010. Sigma factor phosphorylation in the photosynthetic control of photosystem stoichiometry. Proc Natl Acad Sci U S A. 107:10760-10764.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 10760-10764
-
-
Shimizu, M.1
-
16
-
-
79960094103
-
Correlation between nuclear plasmid abundance and plastid number supports the limited transfer window hypothesis
-
doi: 10.1093/gbe/evr001
-
Smith DR, Crosby K, Lee RW. 2011. Correlation between nuclear plasmid abundance and plastid number supports the limited transfer window hypothesis. Genome Biol Evol. doi: 10.1093/gbe/evr001.
-
(2011)
Genome Biol Evol.
-
-
Smith, D.R.1
Crosby, K.2
Lee, R.W.3
-
17
-
-
63849153962
-
MtDNA mutation pattern in tumors and human evolution are shaped by similar selective constraints
-
Zhidkov I, Livneh EA, Rubin E, Mishmar D. 2009. mtDNA mutation pattern in tumors and human evolution are shaped by similar selective constraints. Genome Res. 19:576-580.
-
(2009)
Genome Res
, vol.19
, pp. 576-580
-
-
Zhidkov, I.1
Livneh, E.A.2
Rubin, E.3
Mishmar, D.4
|