메뉴 건너뛰기




Volumn 50, Issue 13, 2011, Pages 8110-8121

Dynamic modeling and nonlinear predictive control based on partitioned model and nonlinear optimization

Author keywords

[No Author keywords available]

Indexed keywords

CONTROL ACCURACY; CONTROL POLICY; DATA ERRORS; DYNAMIC MODELING; MODEL FITTING; MODEL FRAMEWORK; MODELING ERRORS; MODELING PROCEDURE; NON-LINEAR OPTIMIZATION; NONLINEAR PLANT; NONLINEAR PREDICTIVE CONTROL; ONLINE OPTIMIZATION; OPERATING UNITS; PREDICTIVE CONTROLLER; PRIOR KNOWLEDGE; PROCESS BEHAVIOR; TRAINING ALGORITHMS;

EID: 79959824416     PISSN: 08885885     EISSN: 15205045     Source Type: Journal    
DOI: 10.1021/ie102211x     Document Type: Article
Times cited : (49)

References (51)
  • 1
    • 33747876682 scopus 로고    scopus 로고
    • Nonlinear empirical modeling techniques
    • Pearson, R. K. Nonlinear empirical modeling techniques Comput. Chem. Eng. 2006, 30, 1514
    • (2006) Comput. Chem. Eng. , vol.30 , pp. 1514
    • Pearson, R.K.1
  • 2
    • 0037619196 scopus 로고    scopus 로고
    • Combining prior knowledge with data driven modeling of a batch distillation column including start-up
    • Van Lith, P. F.; Betlem, B. H. L.; Roffel., B. Combining prior knowledge with data driven modeling of a batch distillation column including start-up Comput. Chem. Eng. 2003, 27, 1021
    • (2003) Comput. Chem. Eng. , vol.27 , pp. 1021
    • Van Lith, P.F.1    Betlem, B.H.L.2    Roffel, B.3
  • 3
    • 53949093475 scopus 로고    scopus 로고
    • Modelling and nonlinear predictive control of a yeast fermentation biochemical reactor using neural networks
    • Maciej, L. Modelling and nonlinear predictive control of a yeast fermentation biochemical reactor using neural networks Chem. Eng. J. 2008, 45, 290
    • (2008) Chem. Eng. J. , vol.45 , pp. 290
    • MacIej, L.1
  • 4
    • 33646768962 scopus 로고    scopus 로고
    • A unified modeling framework for the optimal design and dynamic simulation of staged reactive separation processes
    • Dalaouti, N.; Seferlis, P. A unified modeling framework for the optimal design and dynamic simulation of staged reactive separation processes Comput. Chem. Eng. 2006, 30, 1264
    • (2006) Comput. Chem. Eng. , vol.30 , pp. 1264
    • Dalaouti, N.1    Seferlis, P.2
  • 5
    • 0043206743 scopus 로고    scopus 로고
    • Data flow modeling for batch and hybrid processes
    • Flaus, J. M.; Thevenon, L. Data flow modeling for batch and hybrid processes ISA Trans. 2003, 42, 361
    • (2003) ISA Trans. , vol.42 , pp. 361
    • Flaus, J.M.1    Thevenon, L.2
  • 6
    • 30344443674 scopus 로고    scopus 로고
    • Modeling of an industrial wet grinding operation using data-driven techniques
    • Kishalay, M.; Mahesh, G. Modeling of an industrial wet grinding operation using data-driven techniques Comput. Chem. Eng. 2006, 30, 508
    • (2006) Comput. Chem. Eng. , vol.30 , pp. 508
    • Kishalay, M.1    Mahesh, G.2
  • 7
    • 1842840116 scopus 로고    scopus 로고
    • Combining first principles modelling and artificial neural networks: A general framework
    • Oliveira, R. Combining first principles modelling and artificial neural networks: a general framework Comput.-Aided Chem. Eng. 2004, 28, 755
    • (2004) Comput.-Aided Chem. Eng. , vol.28 , pp. 755
    • Oliveira, R.1
  • 8
    • 0036680980 scopus 로고    scopus 로고
    • A structured modeling approach for dynamic hybrid fuzzy-first principles models
    • Van Lith, P. F.; Betlem, B. H. L.; Roffel, B. A structured modeling approach for dynamic hybrid fuzzy-first principles models J. Process Control 2002, 12, 605
    • (2002) J. Process Control , vol.12 , pp. 605
    • Van Lith, P.F.1    Betlem, B.H.L.2    Roffel, B.3
  • 9
    • 42949171800 scopus 로고    scopus 로고
    • Differential recurrent neural network based predictive control
    • Al Seyab, R. K.; Cao, Y. Differential recurrent neural network based predictive control Comput. Chem. Eng. 2008, 32, 1533
    • (2008) Comput. Chem. Eng. , vol.32 , pp. 1533
    • Al Seyab, R.K.1    Cao, Y.2
  • 10
    • 53649087251 scopus 로고    scopus 로고
    • Nonlinear system modeling and predictive control using the RBF nets-based quasi-linear ARX model
    • Peng, H.; Wu, J.; Inoussa, G.; Deng, Q. L.; Nakano, K. Nonlinear system modeling and predictive control using the RBF nets-based quasi-linear ARX model Contr. Eng. Pract. 2009, 17, 59
    • (2009) Contr. Eng. Pract. , vol.17 , pp. 59
    • Peng, H.1    Wu, J.2    Inoussa, G.3    Deng, Q.L.4    Nakano, K.5
  • 11
    • 38849114257 scopus 로고    scopus 로고
    • Identification from step responses with transient initial conditions
    • Ahmed, S.; Huang, B.; Shah, S. L. Identification from step responses with transient initial conditions J. Process Control 2008, 18, 121
    • (2008) J. Process Control , vol.18 , pp. 121
    • Ahmed, S.1    Huang, B.2    Shah, S.L.3
  • 12
    • 33845205607 scopus 로고    scopus 로고
    • Improved identification of continuous-time delay processes from piecewise step tests
    • Liu, M.; Wang, Q. G.; Huang, B.; Hang, C. C. Improved identification of continuous-time delay processes from piecewise step tests J. Process Control 2007, 17, 51
    • (2007) J. Process Control , vol.17 , pp. 51
    • Liu, M.1    Wang, Q.G.2    Huang, B.3    Hang, C.C.4
  • 13
    • 0343627880 scopus 로고    scopus 로고
    • Process modelling development through artificial neural networks and hybrid models
    • Zorzetto, L. F. M.; Maciel Filho, R.; Wolf-Maciel, M. R. Process modelling development through artificial neural networks and hybrid models Comput. Chem. Eng. 2000, 24, 1355
    • (2000) Comput. Chem. Eng. , vol.24 , pp. 1355
    • Zorzetto, L.F.M.1    MacIel Filho, R.2    Wolf-Maciel, M.R.3
  • 16
    • 0036532180 scopus 로고    scopus 로고
    • Case studies on closed-loop identification for MPC
    • Zhu, Y.; Butoyi, F. Case studies on closed-loop identification for MPC Contr. Eng. Pract. 2002, 10, 403
    • (2002) Contr. Eng. Pract. , vol.10 , pp. 403
    • Zhu, Y.1    Butoyi, F.2
  • 17
    • 0021494105 scopus 로고
    • The performance improvements of self tuning controllers by multi-step horizons: The MUSMAR approach
    • Greco, C.; Menga, G.; Mosca, E.; Zappa, G. The performance improvements of self tuning controllers by multi-step horizons: The MUSMAR approach Automatica 1987, 20, 681
    • (1987) Automatica , vol.20 , pp. 681
    • Greco, C.1    Menga, G.2    Mosca, E.3    Zappa, G.4
  • 18
    • 0035920331 scopus 로고    scopus 로고
    • Modeling and implicit modeling for predictive control
    • Rossiter, J. A.; Kouvaritakis, B. Modeling and implicit modeling for predictive control Int. J. Control 2001, 74, 1085
    • (2001) Int. J. Control , vol.74 , pp. 1085
    • Rossiter, J.A.1    Kouvaritakis, B.2
  • 21
    • 56949096792 scopus 로고    scopus 로고
    • Linear coupled component automata for MILP modeling of hybrid systems
    • Agarwal, A.; Grossmann, I. E. Linear coupled component automata for MILP modeling of hybrid systems Comput. Chem. Eng. 2009, 33, 162
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 162
    • Agarwal, A.1    Grossmann, I.E.2
  • 22
    • 0042827953 scopus 로고    scopus 로고
    • Knowledge-based hybrid modelling of a batch crystallisation when accounting for nucleation, growth and agglomeration phenomena
    • Georgieva, P.; Meirelesb, M.; Feyo de Azevedo, J. S. Knowledge-based hybrid modelling of a batch crystallisation when accounting for nucleation, growth and agglomeration phenomena Chem. Eng. Sci. 2003, 58, 3699
    • (2003) Chem. Eng. Sci. , vol.58 , pp. 3699
    • Georgieva, P.1    Meirelesb, M.2    Feyo De Azevedo, J.S.3
  • 25
    • 0033117270 scopus 로고    scopus 로고
    • A hybrid model formulation for a distillation column and the on-line optimization study
    • Safavi, A. A.; Nooraii, A.; Romagnoli, J. A. A hybrid model formulation for a distillation column and the on-line optimization study J. Process Control 1999, 9, 125
    • (1999) J. Process Control , vol.9 , pp. 125
    • Safavi, A.A.1    Nooraii, A.2    Romagnoli, J.A.3
  • 26
    • 0043206740 scopus 로고    scopus 로고
    • Hybrid modeling and dynamic simulation of automated batch plants
    • Sanchez, A.; Parra, L. F. Hybrid modeling and dynamic simulation of automated batch plants ISA Trans. 2003, 42, 401
    • (2003) ISA Trans. , vol.42 , pp. 401
    • Sanchez, A.1    Parra, L.F.2
  • 27
    • 0043206740 scopus 로고    scopus 로고
    • Hybrid modeling and dynamic simulation of automated batch plants
    • Sanchez, A.; Parra, L. F.; Baird, R.; Macchietto, S. Hybrid modeling and dynamic simulation of automated batch plants ISA Trans. 2003, 42, 401
    • (2003) ISA Trans. , vol.42 , pp. 401
    • Sanchez, A.1    Parra, L.F.2    Baird, R.3    MacChietto, S.4
  • 28
    • 0030737837 scopus 로고    scopus 로고
    • A dynamic neural network approach to nonlinear process modeling
    • Shaw, A. M.; Doyle, F. J.; Schwaber, J. S. A dynamic neural network approach to nonlinear process modeling Comput. Chem. Eng. 1997, 21, 371
    • (1997) Comput. Chem. Eng. , vol.21 , pp. 371
    • Shaw, A.M.1    Doyle, F.J.2    Schwaber, J.S.3
  • 29
    • 0037093311 scopus 로고    scopus 로고
    • Automated nonlinear model predictive control using genetic programming
    • Grosman, B.; Lewin, D. R. Automated nonlinear model predictive control using genetic programming Comput. Chem. Eng. 2002, 26, 631
    • (2002) Comput. Chem. Eng. , vol.26 , pp. 631
    • Grosman, B.1    Lewin, D.R.2
  • 30
    • 0038467623 scopus 로고    scopus 로고
    • Model predictive control relevant identification and validation
    • Huang, B.; Malhotra, A.; Tamayo, E. C. Model predictive control relevant identification and validation Chem. Eng. Sci. 2003, 58, 2389
    • (2003) Chem. Eng. Sci. , vol.58 , pp. 2389
    • Huang, B.1    Malhotra, A.2    Tamayo, E.C.3
  • 31
    • 0037358193 scopus 로고    scopus 로고
    • A data driven subspace approach to predictive controller design
    • Kadali, R.; Huang, B.; Rossiter, A. A data driven subspace approach to predictive controller design Contr. Eng. Pract. 2003, 11, 261
    • (2003) Contr. Eng. Pract. , vol.11 , pp. 261
    • Kadali, R.1    Huang, B.2    Rossiter, A.3
  • 32
    • 50649124688 scopus 로고    scopus 로고
    • Nonlinear predictive control of a polymerization reactor based on piecewise linear Wiener model
    • Shafiee, G.; Arefi, M. M.; Jahed-Motlagh, M. R.; Jalali, A. A. Nonlinear predictive control of a polymerization reactor based on piecewise linear Wiener model Chem. Eng. J. 2008, 143, 282
    • (2008) Chem. Eng. J. , vol.143 , pp. 282
    • Shafiee, G.1    Arefi, M.M.2    Jahed-Motlagh, M.R.3    Jalali, A.A.4
  • 33
    • 33846587492 scopus 로고    scopus 로고
    • Data-driven predictive control for solid oxide fuel cells
    • Wang, X. R.; Huang, B.; Chen, T. W. Data-driven predictive control for solid oxide fuel cells J. Process Control 2007, 17, 103
    • (2007) J. Process Control , vol.17 , pp. 103
    • Wang, X.R.1    Huang, B.2    Chen, T.W.3
  • 34
    • 33750543548 scopus 로고    scopus 로고
    • Nonlinear predictive control of a drying process using genetic algorithms
    • Yuzgec, U.; Becerikli, Y.; Turker, M. Nonlinear predictive control of a drying process using genetic algorithms ISA Trans. 2006, 45, 589
    • (2006) ISA Trans. , vol.45 , pp. 589
    • Yuzgec, U.1    Becerikli, Y.2    Turker, M.3
  • 35
    • 0029310041 scopus 로고
    • Nonlinear model-based control using second-order Volterra models
    • Doyle, F. J.; Ogunnaike, B. A.; Pearson, R. K. Nonlinear model-based control using second-order Volterra models Automatica 1995, 31, 697
    • (1995) Automatica , vol.31 , pp. 697
    • Doyle, F.J.1    Ogunnaike, B.A.2    Pearson, R.K.3
  • 36
    • 35549007986 scopus 로고    scopus 로고
    • Partitioned model-based IMC design using JITL modeling technique
    • Kalmukale, A. G.; Chiu, M. S.; Wang, Q. G. Partitioned model-based IMC design using JITL modeling technique J. Process Control 2007, 17, 757
    • (2007) J. Process Control , vol.17 , pp. 757
    • Kalmukale, A.G.1    Chiu, M.S.2    Wang, Q.G.3
  • 37
    • 0030233075 scopus 로고    scopus 로고
    • Nonlinear model predictive control of a simulated multivariable polymerization reactor using second-order Volterra models
    • Maner, B. R.; Doyle, F. J.; Ogunnaike, B. A.; Pearson, R. K. Nonlinear model predictive control of a simulated multivariable polymerization reactor using second-order Volterra models Automatica 1996, 32, 1285
    • (1996) Automatica , vol.32 , pp. 1285
    • Maner, B.R.1    Doyle, F.J.2    Ogunnaike, B.A.3    Pearson, R.K.4
  • 38
    • 0032468173 scopus 로고    scopus 로고
    • Studies on the analysis of nonlinear processes via functional expansions - III: Controller design
    • Harris, K. R.; Palazoglu, A. Studies on the analysis of nonlinear processes via functional expansions - III: controller design Chem. Eng. Sci. 1998, 53, 4005
    • (1998) Chem. Eng. Sci. , vol.53 , pp. 4005
    • Harris, K.R.1    Palazoglu, A.2
  • 39
    • 0037138684 scopus 로고    scopus 로고
    • Experimental application of partitioned model-based control to pH neutralization
    • Maksumov, A.; Mulder, D. J.; Harris, K. R.; Palazoglu, A. Experimental application of partitioned model-based control to pH neutralization Ind. Eng. Chem. Res. 2002, 41, 744
    • (2002) Ind. Eng. Chem. Res. , vol.41 , pp. 744
    • Maksumov, A.1    Mulder, D.J.2    Harris, K.R.3    Palazoglu, A.4
  • 40
    • 53149133100 scopus 로고    scopus 로고
    • Robust PID controller design for nonlinear processes using JITL technique
    • Cheng, C.; Chiu, M. S. Robust PID controller design for nonlinear processes using JITL technique Chem. Eng. Sci. 2008, 63, 5141
    • (2008) Chem. Eng. Sci. , vol.63 , pp. 5141
    • Cheng, C.1    Chiu, M.S.2
  • 41
    • 43149122014 scopus 로고    scopus 로고
    • Nonlinear system identification for predictive control using continuous time recurrent neural networks and automatic differentiation
    • Al Seyab, R. K.; Cao, Y. Nonlinear system identification for predictive control using continuous time recurrent neural networks and automatic differentiation J. Process Control 2008, 18, 568
    • (2008) J. Process Control , vol.18 , pp. 568
    • Al Seyab, R.K.1    Cao, Y.2
  • 42
    • 42949090266 scopus 로고    scopus 로고
    • Support vector machine based predictive functional control design for output temperature of coking furnace
    • Zhang, R. D.; Wang, S. Q. Support vector machine based predictive functional control design for output temperature of coking furnace J. Process Control 2008, 18, 439
    • (2008) J. Process Control , vol.18 , pp. 439
    • Zhang, R.D.1    Wang, S.Q.2
  • 44
    • 52949112266 scopus 로고    scopus 로고
    • Hybrid fuzzy predictive control based on genetic algorithms for the temperature control of a batch reactor
    • Causa, J.; Karer, G.; Nunez, A.; Saez, D.; Skrjanc, I.; Zupancic, B. Hybrid fuzzy predictive control based on genetic algorithms for the temperature control of a batch reactor Comput. Chem. Eng. 2008, 32, 3254
    • (2008) Comput. Chem. Eng. , vol.32 , pp. 3254
    • Causa, J.1    Karer, G.2    Nunez, A.3    Saez, D.4    Skrjanc, I.5    Zupancic, B.6
  • 45
    • 33645390138 scopus 로고    scopus 로고
    • A new real-time perspective on non-linear model predictive control
    • DeHaan, D.; Guay, M. A new real-time perspective on non-linear model predictive control J. Process Control 2006, 16, 615
    • (2006) J. Process Control , vol.16 , pp. 615
    • Dehaan, D.1    Guay, M.2
  • 46
    • 34548483642 scopus 로고    scopus 로고
    • Hybrid fuzzy model-based predictive control of temperature in a batch reactor
    • Karer, G.; Music, G.; Skrjanc, I.; Zupancic, B. Hybrid fuzzy model-based predictive control of temperature in a batch reactor Comput. Chem. Eng. 2007, 31, 1552
    • (2007) Comput. Chem. Eng. , vol.31 , pp. 1552
    • Karer, G.1    Music, G.2    Skrjanc, I.3    Zupancic, B.4
  • 48
    • 0023310961 scopus 로고
    • Generalized predictive control-part I: The basic algorithm
    • Clarke, D. W.; Mohtadi, C.; Tuffs, P. S. Generalized predictive control-part I: the basic algorithm Automatica 1987, 23, 137
    • (1987) Automatica , vol.23 , pp. 137
    • Clarke, D.W.1    Mohtadi, C.2    Tuffs, P.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.