메뉴 건너뛰기




Volumn 23, Issue 8, 2011, Pages 1944-1966

Firing variability is higher than deduced from the empirical coefficient of variation

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ANIMAL; BIOLOGICAL MODEL; LETTER; NERVE CELL; PHYSIOLOGY; RAT; THEORETICAL MODEL;

EID: 79959644027     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/NECO_a_00157     Document Type: Letter
Times cited : (16)

References (51)
  • 2
    • 34447327567 scopus 로고    scopus 로고
    • Rate coding is compressed but variability is unaltered for motor units in a hand muscle of old adults
    • Barry, B., Pascoe, M., Jesunathadas, M.,&Enoka, R. (2007). Rate coding is compressed but variability is unaltered for motor units in a hand muscle of old adults. J. Neurophysiol., 97, 3206-3218.
    • (2007) J. Neurophysiol. , vol.97 , pp. 3206-3218
    • Barry, B.1    Pascoe, M.2    Jesunathadas, M.3    Enoka, R.4
  • 3
    • 0025210413 scopus 로고
    • An analysis of neural spiketrain distributions: Determinants of the response of visual-cortex neurons to changes in orientation and spatial-frequence
    • Berger, D., Pribram, K., Wild, H., & Bridges, C. (1990). An analysis of neural spiketrain distributions: Determinants of the response of visual-cortex neurons to changes in orientation and spatial-frequence. Experimental Brain Research, 80, 129-134.
    • (1990) Experimental Brain Research , vol.80 , pp. 129-134
    • Berger, D.1    Pribram, K.2    Wild, H.3    Bridges, C.4
  • 4
    • 1542299749 scopus 로고    scopus 로고
    • Measuring spike coding in the rat supraoptic nucleus
    • Bhumbra, G., & Dyball, R. (2004). Measuring spike coding in the rat supraoptic nucleus. J. Phys.-London, 555, 281-296.
    • (2004) J. Phys.-London , vol.555 , pp. 281-296
    • Bhumbra, G.1    Dyball, R.2
  • 5
    • 0035545489 scopus 로고    scopus 로고
    • An almost unbiased estimator of the coefficient of variation
    • Breunig, R. (2001). An almost unbiased estimator of the coefficient of variation. Economics Letters, 70, 15-19.
    • (2001) Economics Letters , vol.70 , pp. 15-19
    • Breunig, R.1
  • 8
    • 0035384071 scopus 로고    scopus 로고
    • Coefficient of variation vs. mean interspike interval curves: What do they tell us about the brain?
    • Christodoulou, C.,&Bugmann, G. (2001). Coefficient of variation vs. mean interspike interval curves: What do they tell us about the brain? Neurocomput., 38, 1141-1149.
    • (2001) Neurocomput , vol.38 , pp. 1141-1149
    • Christodoulou, C.1    Bugmann, G.2
  • 10
    • 33746723492 scopus 로고    scopus 로고
    • Measurement of time-dependent changes in the irregularity of neural spiking
    • Davies, R., Gerstein, G., & Baker, S. (2006). Measurement of time-dependent changes in the irregularity of neural spiking. J. Neurophysiol., 96, 906-918.
    • (2006) J. Neurophysiol. , vol.96 , pp. 906-918
    • Davies, R.1    Gerstein, G.2    Baker, S.3
  • 11
    • 35248883957 scopus 로고    scopus 로고
    • Parameters of stochastic diffusion processes estimated from observations of first hitting-times: Application to the leaky integrateand-fire neuronal model
    • Ditlevsen, S., & Lansky, P. (2007). Parameters of stochastic diffusion processes estimated from observations of first hitting-times: Application to the leaky integrateand-fire neuronal model. Phys. Rev. E, 76, 041906.
    • (2007) Phys. Rev. E , vol.76 , pp. 041906
    • Ditlevsen, S.1    Lansky, P.2
  • 12
    • 54049088503 scopus 로고    scopus 로고
    • Probability distributions of the logarithm of inter-spike intervals yield accurate entropy estimates from small datasets
    • Dorval, A. D. (2008). Probability distributions of the logarithm of inter-spike intervals yield accurate entropy estimates from small datasets. J. Neurosci. Meth., 173, 129-139.
    • (2008) J. Neurosci. Meth. , vol.173 , pp. 129-139
    • Dorval, A.D.1
  • 13
    • 26844496033 scopus 로고    scopus 로고
    • Patterns of spontaneous activity in single rat olfactory receptor neurons are different in normally breathing and tracheotomized animals
    • Duchamp-Viret, P., Kostal, L., Chaput, M., Lansky, P., & Rospars, J. (2005). Patterns of spontaneous activity in single rat olfactory receptor neurons are different in normally breathing and tracheotomized animals. J. Neurobiol., 65, 97-114.
    • (2005) J. Neurobiol. , vol.65 , pp. 97-114
    • Duchamp-Viret, P.1    Kostal, L.2    Chaput, M.3    Lansky, P.4    Rospars, J.5
  • 14
    • 61449096525 scopus 로고    scopus 로고
    • Serial correlation in neural spike trains: Experimental evidence, stochasticmodeling, and single neuron variability
    • Farkhooi, F., Strube, M., & Nawrot, M. P. (2009). Serial correlation in neural spike trains: Experimental evidence, stochasticmodeling, and single neuron variability. Physical Review E, 79, 021905.
    • (2009) Physical Review E , vol.79 , pp. 021905
    • Farkhooi, F.1    Strube, M.2    Nawrot, M.P.3
  • 15
    • 34548406568 scopus 로고    scopus 로고
    • Reproducing bursting interspike interval statistics of the gustatory cortex
    • Fujiwara, K., Fujiwara, H., Tsukada, M., & Aihara, K. (2007). Reproducing bursting interspike interval statistics of the gustatory cortex. Biosystems, 90(2), 442-448.
    • (2007) Biosystems , vol.90 , Issue.2 , pp. 442-448
    • Fujiwara, K.1    Fujiwara, H.2    Tsukada, M.3    Aihara, K.4
  • 16
    • 0002338948 scopus 로고
    • Random walk models for spike activity of a single neuron
    • Gerstein, G., & Mandelbrot, B. (1964). Random walk models for spike activity of a single neuron. Biophys. J., 4, 41-68.
    • (1964) Biophys. J. , vol.4 , pp. 41-68
    • Gerstein, G.1    Mandelbrot, B.2
  • 17
    • 0032111678 scopus 로고    scopus 로고
    • Dynamics of membrane excitability determine interspike interval variability: A link between spike generation mechanisms and cortical spike train statistics
    • Gutkin, B., & Ermentrout, G. (1998). Dynamics of membrane excitability determine interspike interval variability: A link between spike generation mechanisms and cortical spike train statistics. Neural Comput., 10, 1047-1065.
    • (1998) Neural Comput. , vol.10 , pp. 1047-1065
    • Gutkin, B.1    Ermentrout, G.2
  • 18
    • 0034104146 scopus 로고    scopus 로고
    • Interactions between brainstem and trigeminal neurons detected by cross-spectral analysis
    • Hentall, I. (2000). Interactions between brainstem and trigeminal neurons detected by cross-spectral analysis. Neuroscience, 96, 601-610.
    • (2000) Neuroscience , vol.96 , pp. 601-610
    • Hentall, I.1
  • 19
    • 33845454835 scopus 로고    scopus 로고
    • Sensitive dependence of the coefficient of variation of interspike intervals on the lower boundary of membrane potential for the leaky integrate-and-fire neuron model
    • Inoue, J., & Doi, S. (2007). Sensitive dependence of the coefficient of variation of interspike intervals on the lower boundary of membrane potential for the leaky integrate-and-fire neuron model. BioSystems, 87, 49-57.
    • (2007) BioSystems , vol.87 , pp. 49-57
    • Inoue, J.1    Doi, S.2
  • 20
    • 0031253263 scopus 로고    scopus 로고
    • Modeling neural activity using the generalized inverse gaussian distribution
    • Iyengar, S., & Liao, Q. (1997). Modeling neural activity using the generalized inverse gaussian distribution. Biol. Cybern., 77, 289-295.
    • (1997) Biol. Cybern. , vol.77 , pp. 289-295
    • Iyengar, S.1    Liao, Q.2
  • 21
    • 4344577272 scopus 로고    scopus 로고
    • Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons
    • Jackson, B. (2004). Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons. Neural Comput., 16, 2125-2195.
    • (2004) Neural Comput , vol.16 , pp. 2125-2195
    • Jackson, B.1
  • 23
    • 23944454954 scopus 로고    scopus 로고
    • Motor unit firing statistics and the Fuglevand model
    • Jones, K. (2005).Motor unit firing statistics and the Fuglevand model. J. Neurophysiol., 94, 2255-2256.
    • (2005) J. Neurophysiol. , vol.94 , pp. 2255-2256
    • Jones, K.1
  • 24
    • 45749095342 scopus 로고    scopus 로고
    • Discrimination with spike times and ISI distributions
    • Kang, K., & Amari, S. (2008). Discrimination with spike times and ISI distributions. Neural Comput., 20, 1411-1426.
    • (2008) Neural Comput , vol.20 , pp. 1411-1426
    • Kang, K.1    Amari, S.2
  • 25
    • 31344469892 scopus 로고    scopus 로고
    • Similarity of interspike interval distributions and information gain in a stationary neuronal firing
    • Kostal, L., & Lansky, P. (2006). Similarity of interspike interval distributions and information gain in a stationary neuronal firing. Biol. Cybern., 94, 157-167.
    • (2006) Biol. Cybern. , vol.94 , pp. 157-167
    • Kostal, L.1    Lansky, P.2
  • 26
    • 10744229974 scopus 로고    scopus 로고
    • Mean instantaneous firing frequency is always higher than the firing rate
    • Lansky, P., Rodriguez, R., & Sacerdote, L. (2004). Mean instantaneous firing frequency is always higher than the firing rate. Neural Comput., 16, 477-489.
    • (2004) Neural Comput. , vol.16 , pp. 477-489
    • Lansky, P.1    Rodriguez, R.2    Sacerdote, L.3
  • 27
    • 0035796609 scopus 로고    scopus 로고
    • The Ornstein-Uhlenbeck neuronal model with signal-dependent noise
    • Lansky, P., & Sacerdote, L. (2001). The Ornstein-Uhlenbeck neuronal model with signal-dependent noise. Physics Letters A, 285(3-4), 132-140.
    • (2001) Physics Letters A , vol.285 , Issue.3-4 , pp. 132-140
    • Lansky, P.1    Sacerdote, L.2
  • 28
    • 0026263912 scopus 로고
    • The distribution of the intervals between neural impulses in the maintained discharges of retinol ganglion-cells
    • Levine, M. (1991). The distribution of the intervals between neural impulses in the maintained discharges of retinol ganglion-cells. Biol. Cybern., 65, 459-467.
    • (1991) Biol. Cybern. , vol.65 , pp. 459-467
    • Levine, M.1
  • 29
    • 0043009735 scopus 로고    scopus 로고
    • Analytic expressions for rate and CV of a type I neuron driven by white gaussian noise
    • Lindner, B., Longtin, A., & Bulsara, A. (2003). Analytic expressions for rate and CV of a type I neuron driven by white gaussian noise. Neural Comput., 15, 1761-1788.
    • (2003) Neural Comput. , vol.15 , pp. 1761-1788
    • Lindner, B.1    Longtin, A.2    Bulsara, A.3
  • 30
    • 66249117496 scopus 로고    scopus 로고
    • Spike train statistics and dynamics with synaptic input fromany renewal process: A population density approach
    • Ly, C., & Tranchina, D. (2009). Spike train statistics and dynamics with synaptic input fromany renewal process: A population density approach. Neural Comput., 21, 360-396.
    • (2009) Neural Comput. , vol.21 , pp. 360-396
    • Ly, C.1    Tranchina, D.2
  • 31
    • 0027232139 scopus 로고
    • Coding for stimulus velocity by temporal patterning of spike discharges in visual cells of cat superior colliculus
    • Mandl, G. (1993). Coding for stimulus velocity by temporal patterning of spike discharges in visual cells of cat superior colliculus. Vision Research, 33(11), 1451-1475.
    • (1993) Vision Research , vol.33 , Issue.11 , pp. 1451-1475
    • Mandl, G.1
  • 32
    • 0036498502 scopus 로고    scopus 로고
    • Spontaneous and odour evoked activity in single avian olfactory bulb neurones
    • McKeegan, D. (2002). Spontaneous and odour evoked activity in single avian olfactory bulb neurones. Brain Research, 929(1), 48-58.
    • (2002) Brain Research , vol.929 , Issue.1 , pp. 48-58
    • McKeegan, D.1
  • 33
    • 33749438552 scopus 로고    scopus 로고
    • Estimating spiking irregularities under changing environments
    • Miura, K., Okada, M., & Amari, S.-I. (2006). Estimating spiking irregularities under changing environments. Neural Comput., 18, 2359-2386.
    • (2006) Neural Comput , vol.18 , pp. 2359-2386
    • Miura, K.1    Okada, M.2    Amari, S.-I.3
  • 34
    • 0027937585 scopus 로고
    • On the interspike intervals calculated from diffusion approximations of Stein's neuronal model with reversal potentials
    • Musila,M., & Lansky, P. (1994). On the interspike intervals calculated from diffusion approximations of Stein's neuronal model with reversal potentials. J. Theo. Biol., 171, 225-232.
    • (1994) J. Theo. Biol. , vol.171 , pp. 225-232
    • Musila, M.1    Lansky, P.2
  • 37
    • 43449123054 scopus 로고    scopus 로고
    • Parameters of spike trains observed in a short time window
    • Pawlas, Z., Klebanov, L., Prokop, M., & Lansky, P. (2008). Parameters of spike trains observed in a short time window. Neural Comput., 20, 1325-1343.
    • (2008) Neural Comput , vol.20 , pp. 1325-1343
    • Pawlas, Z.1    Klebanov, L.2    Prokop, M.3    Lansky, P.4
  • 39
    • 77956927737 scopus 로고    scopus 로고
    • Comparison of local measures of spike time irregularity and relating variability to firing rate in motor cortical neurons
    • Ponce-Alvarez, A., Kilavik, B. E., & Riehle, A. (2009). Comparison of local measures of spike time irregularity and relating variability to firing rate in motor cortical neurons. J. Comput. Neurosci., 29, 351-365.
    • (2009) J. Comput. Neurosci. , vol.29 , pp. 351-365
    • Ponce-Alvarez, A.1    Kilavik, B.E.2    Riehle, A.3
  • 40
    • 70149113077 scopus 로고    scopus 로고
    • R Development Core Team. Vienna: R Foundation for Statistical Computing
    • R Development Core Team. (2009). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
    • (2009) R: A language and environment for statistical computing
  • 43
    • 77956933570 scopus 로고    scopus 로고
    • A characterization of the timerescaled gamma process as a model for spike trains
    • Shimokawa, T., Koyama, S., & Shinomoto, S. (2010). A characterization of the timerescaled gamma process as a model for spike trains. J. Comput. Neurosci., 29, 183-191.
    • (2010) J. Comput. Neurosci. , vol.29 , pp. 183-191
    • Shimokawa, T.1    Koyama, S.2    Shinomoto, S.3
  • 44
    • 68249118540 scopus 로고    scopus 로고
    • Estimating instantaneous irregularity of neuronal firing
    • Shimokawa, T., & Shinomoto, S. (2009). Estimating instantaneous irregularity of neuronal firing. Neural Comput., 21, 1931-1951.
    • (2009) Neural Comput. , vol.21 , pp. 1931-1951
    • Shimokawa, T.1    Shinomoto, S.2
  • 45
    • 68249088380 scopus 로고    scopus 로고
    • Relating neuronal firing patterns to functional differentiation of cerebral cortex
    • Shinomoto, S., Kim, H., Shimokawa, T., Matsuno, N., Funahashi, S., Shima, K., et al. (2009). Relating neuronal firing patterns to functional differentiation of cerebral cortex. PLoS Comput. Biol., 5(7), e1000433.
    • (2009) PLoS Comput. Biol. , vol.5 , Issue.7
    • Shinomoto, S.1    Kim, H.2    Shimokawa, T.3    Matsuno, N.4    Funahashi, S.5    Shima, K.6
  • 46
    • 11844301619 scopus 로고    scopus 로고
    • A measure of local variation of interspike intervals
    • Shinomoto, S., Miura, K., & Koyama, S. (2005). A measure of local variation of interspike intervals. BioSystems, 79(1-3), 67-72.
    • (2005) BioSystems , vol.79 , Issue.1-3 , pp. 67-72
    • Shinomoto, S.1    Miura, K.2    Koyama, S.3
  • 47
    • 0242550879 scopus 로고    scopus 로고
    • Differences in spiking patterns among cortical neurons
    • Shinomoto, S., Shima, K., & Tanji, J. (2003). Differences in spiking patterns among cortical neurons. Neural Comput., 15, 2823-2842.
    • (2003) Neural Comput. , vol.15 , pp. 2823-2842
    • Shinomoto, S.1    Shima, K.2    Tanji, J.3
  • 48
    • 17844406150 scopus 로고    scopus 로고
    • Neuronal variability: Noise or part of the signal?
    • Stein, R., Gossen, E., & Jones, K. (2005). Neuronal variability: Noise or part of the signal? Nature Rev. Neurosci., 6(5), 389-397.
    • (2005) Nature Rev. Neurosci. , vol.6 , Issue.5 , pp. 389-397
    • Stein, R.1    Gossen, E.2    Jones, K.3
  • 49
    • 0029310583 scopus 로고
    • Temporal encoding in nervous systems:Arigorous definition
    • Theunissen, F.,&Miller, J. (1995). Temporal encoding in nervous systems:Arigorous definition. J. Comput. Neurosci., 2, 149-162.
    • (1995) J. Comput. Neurosci. , vol.2 , pp. 149-162
    • Theunissen, F.1    Miller, J.2
  • 50
    • 59649129373 scopus 로고    scopus 로고
    • Are the input parameters of white noise driven integrate and fire neurons uniquely determined by rate and CV?
    • Vilela, R., & Lindner, B. (2009). Are the input parameters of white noise driven integrate and fire neurons uniquely determined by rate and CV? J. Theo. Biol., 257(1), 90-99.
    • (2009) J. Theo. Biol. , vol.257 , Issue.1 , pp. 90-99
    • Vilela, R.1    Lindner, B.2
  • 51
    • 0141430932 scopus 로고    scopus 로고
    • An adjustment of the time-rescaling method for application to short-trial spike train data
    • Wiener,M. C. (2003). An adjustment of the time-rescaling method for application to short-trial spike train data. Neural Comput., 15, 2565-2576.
    • (2003) Neural Comput. , vol.15 , pp. 2565-2576
    • Wiener, M.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.