-
3
-
-
84893531587
-
Rough sets in spatio-temporal data mining
-
In: J.F. Roddick and K. Homsby, eds, Berlin, Heidelberg: Springer
-
Bittner, T., 2001. Rough sets in spatio-temporal data mining. In: J.F. Roddick and K. Homsby, eds. Temporal, spatial, and spatio-temporal data mining. Berlin, Heidelberg: Springer, 89-104.
-
(2001)
Temporal, Spatial, and Spatio-temporal Data Mining
, pp. 89-104
-
-
Bittner, T.1
-
4
-
-
84957809931
-
Rough sets in approximate spatial reasoning
-
In:W. Ziarko and Y. Yao, eds, Berlin, Heidelberg: Springer
-
Bittner, T. and Stell, G.J., 2001. Rough sets in approximate spatial reasoning. In:W. Ziarko and Y. Yao, eds. Rough sets and current trends in computing. Berlin, Heidelberg: Springer, 445-453.
-
(2001)
Rough Sets and Current Trends in Computing
, pp. 445-453
-
-
Bittner, T.1
Stell, G.J.2
-
5
-
-
23444444535
-
Rough set rule induction for suitability assessment
-
Berger, A.P., 2004. Rough set rule induction for suitability assessment. Environmental Management, 34 (4), 546-558.
-
(2004)
Environmental Management
, vol.34
, Issue.4
, pp. 546-558
-
-
Berger, A.P.1
-
6
-
-
33750951467
-
Spatial data methods and vague regions: A rough set approach
-
Beaubouef, T., et al., 2007. Spatial data methods and vague regions: a rough set approach. Applied Soft Computing, 7 (1), 425-440.
-
(2007)
Applied Soft Computing
, vol.7
, Issue.1
, pp. 425-440
-
-
Beaubouef, T.1
-
7
-
-
77949502687
-
Using rough set theory to identify villages affected by birth defects: The example of Heshun, Shanxi, China
-
Bai, H.X., et al., 2010. Using rough set theory to identify villages affected by birth defects: the example of Heshun, Shanxi, China. International Journal Geographical Information Science, 24 (4), 559-576.
-
(2010)
International Journal Geographical Information Science
, vol.24
, Issue.4
, pp. 559-576
-
-
Bai, H.X.1
-
8
-
-
85014549230
-
Digital Earth in support of global change research
-
Chen, S.P. and van Genderen, J., 2008. Digital Earth in support of global change research. International Journal of Digital Earth, 1 (1), 43-65.
-
(2008)
International Journal of Digital Earth
, vol.1
, Issue.1
, pp. 43-65
-
-
Chen, S.P.1
van Genderen, J.2
-
9
-
-
85139983802
-
Supervised and unsupervised discretization of continuous features
-
9-12 July, Tahoe City, California. Morgan Kaufmann
-
Dougherty, J., et al., 1995. Supervised and unsupervised discretization of continuous features. In: Proceedings of the twelfth international conference on machine learning, 9-12 July, Tahoe City, California. Morgan Kaufmann, 194-202.
-
(1995)
Proceedings of the Twelfth International Conference on Machine Learning
, pp. 194-202
-
-
Dougherty, J.1
-
10
-
-
40249120068
-
A hybrid rough set particle swarm algorithm for image pixel classification
-
13-15 December, Auckland, New Zealand
-
Das, S., et al., 2006. A hybrid rough set particle swarm algorithm for image pixel classification. In: Proceedings of the sixth international conference on hybrid intelligent systems, 13-15 December, Auckland, New Zealand, 26-30.
-
(2006)
Proceedings of the Sixth International Conference on Hybrid Intelligent Systems
, pp. 26-30
-
-
Das, S.1
-
11
-
-
79959561317
-
Experimental study on the discretization on remote sensing data
-
14-15 September, Beijing, China
-
Duan, R.F., et al., 2007. Experimental study on the discretization on remote sensing data. In: 7th international workshop on geographical information system, 14-15 September, Beijing, China, 383-388.
-
(2007)
7th International Workshop on Geographical Information System
, pp. 383-388
-
-
Duan, R.F.1
-
12
-
-
0345403556
-
Assessing map accuracy in a remotely sensed, ecoregion-scale cover map - a user's perspective
-
Edwards, T.C., et al., 1998. Assessing map accuracy in a remotely sensed, ecoregion-scale cover map - a user's perspective. Remote Sensing of Environment, 63, 73-83.
-
(1998)
Remote Sensing of Environment
, vol.63
, pp. 73-83
-
-
Edwards, T.C.1
-
13
-
-
0003024008
-
On the handling of continuous-valued attributes in decision tree generation
-
Fayyad, U.M. and Irani, K.B., 1992. On the handling of continuous-valued attributes in decision tree generation. Machine Learning, 8, 87-102.
-
(1992)
Machine Learning
, vol.8
, pp. 87-102
-
-
Fayyad, U.M.1
Irani, K.B.2
-
14
-
-
0002593344
-
Multi-interval discretization of continuous-valued attributes for classification learning
-
28 August-3 September, Chambery, France. Morgan Kaufmann
-
Fayyad, U.M. and Irani, K.B., 1993. Multi-interval discretization of continuous-valued attributes for classification learning. In: Proceedings of the 13th international joint conference on artificial intelligence, 28 August-3 September, Chambery, France. Morgan Kaufmann, 1022-1027.
-
(1993)
Proceedings of the 13th International Joint Conference on Artificial Intelligence
, pp. 1022-1027
-
-
Fayyad, U.M.1
Irani, K.B.2
-
15
-
-
70449377908
-
Rough set-derived measures in image classification accuracy assessment
-
Ge, Y., et al., 2009. Rough set-derived measures in image classification accuracy assessment. International Journal of Remote Sensing, 30 (20), 5323-5344.
-
(2009)
International Journal of Remote Sensing
, vol.30
, Issue.20
, pp. 5323-5344
-
-
Ge, Y.1
-
16
-
-
0003431077
-
The digital earth: Understanding our planet in the 21st century
-
January Los Angeles, CA, USA
-
Gore, A., 1998. The digital earth: understanding our planet in the 21st century. In: Presented at the Californian Science Center. 31 January Los Angeles, CA, USA.
-
(1998)
Presented At the Californian Science Center
, pp. 31
-
-
Gore, A.1
-
17
-
-
85009719960
-
A digital earth prototype system: DEPS/CAS
-
Guo, H., et al., 2009. A digital earth prototype system: DEPS/CAS. International Journal of Digital Earth, 2 (1), 3-15.
-
(2009)
International Journal of Digital Earth
, vol.2
, Issue.1
, pp. 3-15
-
-
Guo, H.1
-
18
-
-
0027580356
-
Very simple classification rules perform well on most commonly used datasets
-
Holte, R.C., 1993. Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11, 63-90.
-
(1993)
Machine Learning
, vol.11
, pp. 63-90
-
-
Holte, R.C.1
-
19
-
-
1642344533
-
Rough neural network of variable precision
-
Liu, H.J., et al., 2004. Rough neural network of variable precision. Neural Processing Letters, 19, 73-87.
-
(2004)
Neural Processing Letters
, vol.19
, pp. 73-87
-
-
Liu, H.J.1
-
20
-
-
34548559200
-
A rough set approach to the discovery of classification rules in spatial data
-
Leung, Y., et al., 2007. A rough set approach to the discovery of classification rules in spatial data. International Journal of Geographical Information Science, 21 (9), 1033-1038.
-
(2007)
International Journal of Geographical Information Science
, vol.21
, Issue.9
, pp. 1033-1038
-
-
Leung, Y.1
-
21
-
-
78650348733
-
Tolerant rough set on satellite remote sensing data classification
-
(In Chinese)
-
Li, L.W. et al., 2007. Tolerant rough set on satellite remote sensing data classification. Computer Egineering and Applications, 43 (20), 11-13. (In Chinese)
-
(2007)
Computer Egineering and Applications
, vol.43
, Issue.20
, pp. 11-13
-
-
Li, L.W.1
-
22
-
-
79959536715
-
Tolerant rough set processing on uncertainty of satellite remote sensing data classification
-
(In Chinese)
-
Li, L.W., et al., 2008. Tolerant rough set processing on uncertainty of satellite remote sensing data classification. Computer Engineering, 34 (6), 2-6. (In Chinese)
-
(2008)
Computer Engineering
, vol.34
, Issue.6
, pp. 2-6
-
-
Li, L.W.1
-
23
-
-
39549119328
-
The comparison of PCA and discrete rough set for feature extraction of remotely sensed imagery classification - a case study on rice classification, Taiwan
-
Lei, T.C., et al., 2008. The comparison of PCA and discrete rough set for feature extraction of remotely sensed imagery classification - a case study on rice classification, Taiwan. Computers & Geosciences, 12, 1-14.
-
(2008)
Computers & Geosciences
, vol.12
, pp. 1-14
-
-
Lei, T.C.1
-
24
-
-
33845716268
-
Remote sensing data classification using tolerant rough set and neural networks
-
Ma, J.W. and Hasi, B., 2005. Remote sensing data classification using tolerant rough set and neural networks. Science in China Ser. D Earth Science, 48 (12), 2251-2259.
-
(2005)
Science in China Ser. D Earth Science
, vol.48
, Issue.12
, pp. 2251-2259
-
-
Ma, J.W.1
Hasi, B.2
-
25
-
-
84947728411
-
Discretizaiton problem for rough sets methods
-
In: L. Polkowski and A. Skowron, eds, London: Springer-Verlag
-
Nguyen, H.S., 1998. Discretizaiton problem for rough sets methods. In: L. Polkowski and A. Skowron, eds. Rough sets and current trends in computing. London: Springer-Verlag, 545-552.
-
(1998)
Rough Sets and Current Trends in Computing
, pp. 545-552
-
-
Nguyen, H.S.1
-
26
-
-
33747120577
-
Land cover classification based on tolerant rough set
-
Ouyang, Y. and Ma, J.W., 2006. Land cover classification based on tolerant rough set. International Journal of Remote Sensing, 27 (14), 3041-3047.
-
(2006)
International Journal of Remote Sensing
, vol.27
, Issue.14
, pp. 3041-3047
-
-
Ouyang, Y.1
Ma, J.W.2
-
29
-
-
0036875221
-
Multispectral image segmentation using the rough-set-initialized EM algorithm
-
Pal, S.K. and Mitra, P., 2002. Multispectral image segmentation using the rough-set-initialized EM algorithm. IEEE Transactions on geoscience and remote sensing, 40 (11), 2495-2501.
-
(2002)
IEEE Transactions on Geoscience and Remote Sensing
, vol.40
, Issue.11
, pp. 2495-2501
-
-
Pal, S.K.1
Mitra, P.2
-
32
-
-
0037332845
-
Fuzzy discretizaiton of feature space for a rough set classifier
-
Roy, A. and Pal, R.K., 2003. Fuzzy discretizaiton of feature space for a rough set classifier. Pattern Recognition Letters, 24 (6), 859-902.
-
(2003)
Pattern Recognition Letters
, vol.24
, Issue.6
, pp. 859-902
-
-
Roy, A.1
Pal, R.K.2
-
34
-
-
84963957162
-
Research on remotely sensed imagery classification using neural network based on rough sets
-
29 October-1 November, Beijing, China
-
Wu, Z.C., 2001. Research on remotely sensed imagery classification using neural network based on rough sets. In: International conferences on info-tech and info-net, 29 October-1 November, Beijing, China, 279-284.
-
(2001)
International Conferences on Info-tech and Info-net
, pp. 279-284
-
-
Wu, Z.C.1
-
36
-
-
9444245312
-
Rough spatial interpretation
-
In: S. Tsumoto et al., eds, Berlin, Heidelberg: Springer
-
Wang, S.L., et al., 2004. Rough spatial interpretation. In: S. Tsumoto et al., eds. Rough sets and current trends in computing. Berlin, Heidelberg: Springer, 435-444.
-
(2004)
Rough Sets and Current Trends in Computing
, pp. 435-444
-
-
Wang, S.L.1
-
37
-
-
48749101538
-
Comparison studies on classification for remotely sensed imagery based on data mining method
-
Xiao, H. and Zhang, X.B., 2008. Comparison studies on classification for remotely sensed imagery based on data mining method. WSEAS Transactions on computers, 5 (7), 552-558.
-
(2008)
WSEAS Transactions on Computers
, vol.5
, Issue.7
, pp. 552-558
-
-
Xiao, H.1
Zhang, X.B.2
-
39
-
-
26944452400
-
A hybrid classifier based on rough set theory and support vector machines
-
In: L. Wang and Y. Jin, eds, Berlin, Heidelberg: Springer
-
Zhang, G.X., et al., 2005. A hybrid classifier based on rough set theory and support vector machines. In: L. Wang and Y. Jin, eds. Fuzzy systems and knowledge discovery. Berlin, Heidelberg: Springer, 1287-1296.
-
(2005)
Fuzzy Systems and Knowledge Discovery
, pp. 1287-1296
-
-
Zhang, G.X.1
-
40
-
-
42949156198
-
Hyperspectral RS image classification based on fractal and rough set
-
Wuhan
-
Zhan, Y.J., et al., 2007. Hyperspectral RS image classification based on fractal and rough set. In Second International Conference on Space Information Technology, Wuhan, 6795 (3), 67954F.1-67954F.6.
-
(2007)
Second International Conference on Space Information Technology
, vol.6795
, Issue.3
, pp. 1-6
-
-
Zhan, Y.J.1
-
41
-
-
79959569751
-
A remote sensing feature discretization method accommodating uncertainty in classification systems
-
25-27 June, Shanghai, China
-
Zhang, G.F., et al., 2008. A remote sensing feature discretization method accommodating uncertainty in classification systems. In: Proceedings of the 8th international symposium on spatial accuracy assessment in natural resources and environmental sciences, 25-27 June, Shanghai, China, 195-202.
-
(2008)
Proceedings of the 8th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences
, pp. 195-202
-
-
Zhang, G.F.1
|