메뉴 건너뛰기




Volumn 4, Issue 4, 2011, Pages 330-346

Impact of discretization methods on the rough set-based classification of remotely sensed images

Author keywords

Classification; Data mining; Discretization; Image processing; Remote sensing; Rough set

Indexed keywords

DATA MINING; DISCRETE EVENT SIMULATION; IMAGE CLASSIFICATION; IMAGE PROCESSING; REMOTE SENSING; ROUGH SET THEORY; VOLUME MEASUREMENT;

EID: 79959553805     PISSN: 17538947     EISSN: 17538955     Source Type: Journal    
DOI: 10.1080/17538947.2010.494738     Document Type: Article
Times cited : (11)

References (41)
  • 3
    • 84893531587 scopus 로고    scopus 로고
    • Rough sets in spatio-temporal data mining
    • In: J.F. Roddick and K. Homsby, eds, Berlin, Heidelberg: Springer
    • Bittner, T., 2001. Rough sets in spatio-temporal data mining. In: J.F. Roddick and K. Homsby, eds. Temporal, spatial, and spatio-temporal data mining. Berlin, Heidelberg: Springer, 89-104.
    • (2001) Temporal, Spatial, and Spatio-temporal Data Mining , pp. 89-104
    • Bittner, T.1
  • 4
    • 84957809931 scopus 로고    scopus 로고
    • Rough sets in approximate spatial reasoning
    • In:W. Ziarko and Y. Yao, eds, Berlin, Heidelberg: Springer
    • Bittner, T. and Stell, G.J., 2001. Rough sets in approximate spatial reasoning. In:W. Ziarko and Y. Yao, eds. Rough sets and current trends in computing. Berlin, Heidelberg: Springer, 445-453.
    • (2001) Rough Sets and Current Trends in Computing , pp. 445-453
    • Bittner, T.1    Stell, G.J.2
  • 5
    • 23444444535 scopus 로고    scopus 로고
    • Rough set rule induction for suitability assessment
    • Berger, A.P., 2004. Rough set rule induction for suitability assessment. Environmental Management, 34 (4), 546-558.
    • (2004) Environmental Management , vol.34 , Issue.4 , pp. 546-558
    • Berger, A.P.1
  • 6
    • 33750951467 scopus 로고    scopus 로고
    • Spatial data methods and vague regions: A rough set approach
    • Beaubouef, T., et al., 2007. Spatial data methods and vague regions: a rough set approach. Applied Soft Computing, 7 (1), 425-440.
    • (2007) Applied Soft Computing , vol.7 , Issue.1 , pp. 425-440
    • Beaubouef, T.1
  • 7
    • 77949502687 scopus 로고    scopus 로고
    • Using rough set theory to identify villages affected by birth defects: The example of Heshun, Shanxi, China
    • Bai, H.X., et al., 2010. Using rough set theory to identify villages affected by birth defects: the example of Heshun, Shanxi, China. International Journal Geographical Information Science, 24 (4), 559-576.
    • (2010) International Journal Geographical Information Science , vol.24 , Issue.4 , pp. 559-576
    • Bai, H.X.1
  • 9
    • 85139983802 scopus 로고
    • Supervised and unsupervised discretization of continuous features
    • 9-12 July, Tahoe City, California. Morgan Kaufmann
    • Dougherty, J., et al., 1995. Supervised and unsupervised discretization of continuous features. In: Proceedings of the twelfth international conference on machine learning, 9-12 July, Tahoe City, California. Morgan Kaufmann, 194-202.
    • (1995) Proceedings of the Twelfth International Conference on Machine Learning , pp. 194-202
    • Dougherty, J.1
  • 10
    • 40249120068 scopus 로고    scopus 로고
    • A hybrid rough set particle swarm algorithm for image pixel classification
    • 13-15 December, Auckland, New Zealand
    • Das, S., et al., 2006. A hybrid rough set particle swarm algorithm for image pixel classification. In: Proceedings of the sixth international conference on hybrid intelligent systems, 13-15 December, Auckland, New Zealand, 26-30.
    • (2006) Proceedings of the Sixth International Conference on Hybrid Intelligent Systems , pp. 26-30
    • Das, S.1
  • 11
    • 79959561317 scopus 로고    scopus 로고
    • Experimental study on the discretization on remote sensing data
    • 14-15 September, Beijing, China
    • Duan, R.F., et al., 2007. Experimental study on the discretization on remote sensing data. In: 7th international workshop on geographical information system, 14-15 September, Beijing, China, 383-388.
    • (2007) 7th International Workshop on Geographical Information System , pp. 383-388
    • Duan, R.F.1
  • 12
    • 0345403556 scopus 로고    scopus 로고
    • Assessing map accuracy in a remotely sensed, ecoregion-scale cover map - a user's perspective
    • Edwards, T.C., et al., 1998. Assessing map accuracy in a remotely sensed, ecoregion-scale cover map - a user's perspective. Remote Sensing of Environment, 63, 73-83.
    • (1998) Remote Sensing of Environment , vol.63 , pp. 73-83
    • Edwards, T.C.1
  • 13
    • 0003024008 scopus 로고
    • On the handling of continuous-valued attributes in decision tree generation
    • Fayyad, U.M. and Irani, K.B., 1992. On the handling of continuous-valued attributes in decision tree generation. Machine Learning, 8, 87-102.
    • (1992) Machine Learning , vol.8 , pp. 87-102
    • Fayyad, U.M.1    Irani, K.B.2
  • 14
    • 0002593344 scopus 로고
    • Multi-interval discretization of continuous-valued attributes for classification learning
    • 28 August-3 September, Chambery, France. Morgan Kaufmann
    • Fayyad, U.M. and Irani, K.B., 1993. Multi-interval discretization of continuous-valued attributes for classification learning. In: Proceedings of the 13th international joint conference on artificial intelligence, 28 August-3 September, Chambery, France. Morgan Kaufmann, 1022-1027.
    • (1993) Proceedings of the 13th International Joint Conference on Artificial Intelligence , pp. 1022-1027
    • Fayyad, U.M.1    Irani, K.B.2
  • 15
    • 70449377908 scopus 로고    scopus 로고
    • Rough set-derived measures in image classification accuracy assessment
    • Ge, Y., et al., 2009. Rough set-derived measures in image classification accuracy assessment. International Journal of Remote Sensing, 30 (20), 5323-5344.
    • (2009) International Journal of Remote Sensing , vol.30 , Issue.20 , pp. 5323-5344
    • Ge, Y.1
  • 16
    • 0003431077 scopus 로고    scopus 로고
    • The digital earth: Understanding our planet in the 21st century
    • January Los Angeles, CA, USA
    • Gore, A., 1998. The digital earth: understanding our planet in the 21st century. In: Presented at the Californian Science Center. 31 January Los Angeles, CA, USA.
    • (1998) Presented At the Californian Science Center , pp. 31
    • Gore, A.1
  • 17
    • 85009719960 scopus 로고    scopus 로고
    • A digital earth prototype system: DEPS/CAS
    • Guo, H., et al., 2009. A digital earth prototype system: DEPS/CAS. International Journal of Digital Earth, 2 (1), 3-15.
    • (2009) International Journal of Digital Earth , vol.2 , Issue.1 , pp. 3-15
    • Guo, H.1
  • 18
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • Holte, R.C., 1993. Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11, 63-90.
    • (1993) Machine Learning , vol.11 , pp. 63-90
    • Holte, R.C.1
  • 19
    • 1642344533 scopus 로고    scopus 로고
    • Rough neural network of variable precision
    • Liu, H.J., et al., 2004. Rough neural network of variable precision. Neural Processing Letters, 19, 73-87.
    • (2004) Neural Processing Letters , vol.19 , pp. 73-87
    • Liu, H.J.1
  • 20
    • 34548559200 scopus 로고    scopus 로고
    • A rough set approach to the discovery of classification rules in spatial data
    • Leung, Y., et al., 2007. A rough set approach to the discovery of classification rules in spatial data. International Journal of Geographical Information Science, 21 (9), 1033-1038.
    • (2007) International Journal of Geographical Information Science , vol.21 , Issue.9 , pp. 1033-1038
    • Leung, Y.1
  • 21
    • 78650348733 scopus 로고    scopus 로고
    • Tolerant rough set on satellite remote sensing data classification
    • (In Chinese)
    • Li, L.W. et al., 2007. Tolerant rough set on satellite remote sensing data classification. Computer Egineering and Applications, 43 (20), 11-13. (In Chinese)
    • (2007) Computer Egineering and Applications , vol.43 , Issue.20 , pp. 11-13
    • Li, L.W.1
  • 22
    • 79959536715 scopus 로고    scopus 로고
    • Tolerant rough set processing on uncertainty of satellite remote sensing data classification
    • (In Chinese)
    • Li, L.W., et al., 2008. Tolerant rough set processing on uncertainty of satellite remote sensing data classification. Computer Engineering, 34 (6), 2-6. (In Chinese)
    • (2008) Computer Engineering , vol.34 , Issue.6 , pp. 2-6
    • Li, L.W.1
  • 23
    • 39549119328 scopus 로고    scopus 로고
    • The comparison of PCA and discrete rough set for feature extraction of remotely sensed imagery classification - a case study on rice classification, Taiwan
    • Lei, T.C., et al., 2008. The comparison of PCA and discrete rough set for feature extraction of remotely sensed imagery classification - a case study on rice classification, Taiwan. Computers & Geosciences, 12, 1-14.
    • (2008) Computers & Geosciences , vol.12 , pp. 1-14
    • Lei, T.C.1
  • 24
    • 33845716268 scopus 로고    scopus 로고
    • Remote sensing data classification using tolerant rough set and neural networks
    • Ma, J.W. and Hasi, B., 2005. Remote sensing data classification using tolerant rough set and neural networks. Science in China Ser. D Earth Science, 48 (12), 2251-2259.
    • (2005) Science in China Ser. D Earth Science , vol.48 , Issue.12 , pp. 2251-2259
    • Ma, J.W.1    Hasi, B.2
  • 25
    • 84947728411 scopus 로고    scopus 로고
    • Discretizaiton problem for rough sets methods
    • In: L. Polkowski and A. Skowron, eds, London: Springer-Verlag
    • Nguyen, H.S., 1998. Discretizaiton problem for rough sets methods. In: L. Polkowski and A. Skowron, eds. Rough sets and current trends in computing. London: Springer-Verlag, 545-552.
    • (1998) Rough Sets and Current Trends in Computing , pp. 545-552
    • Nguyen, H.S.1
  • 26
    • 33747120577 scopus 로고    scopus 로고
    • Land cover classification based on tolerant rough set
    • Ouyang, Y. and Ma, J.W., 2006. Land cover classification based on tolerant rough set. International Journal of Remote Sensing, 27 (14), 3041-3047.
    • (2006) International Journal of Remote Sensing , vol.27 , Issue.14 , pp. 3041-3047
    • Ouyang, Y.1    Ma, J.W.2
  • 29
    • 0036875221 scopus 로고    scopus 로고
    • Multispectral image segmentation using the rough-set-initialized EM algorithm
    • Pal, S.K. and Mitra, P., 2002. Multispectral image segmentation using the rough-set-initialized EM algorithm. IEEE Transactions on geoscience and remote sensing, 40 (11), 2495-2501.
    • (2002) IEEE Transactions on Geoscience and Remote Sensing , vol.40 , Issue.11 , pp. 2495-2501
    • Pal, S.K.1    Mitra, P.2
  • 32
    • 0037332845 scopus 로고    scopus 로고
    • Fuzzy discretizaiton of feature space for a rough set classifier
    • Roy, A. and Pal, R.K., 2003. Fuzzy discretizaiton of feature space for a rough set classifier. Pattern Recognition Letters, 24 (6), 859-902.
    • (2003) Pattern Recognition Letters , vol.24 , Issue.6 , pp. 859-902
    • Roy, A.1    Pal, R.K.2
  • 34
    • 84963957162 scopus 로고    scopus 로고
    • Research on remotely sensed imagery classification using neural network based on rough sets
    • 29 October-1 November, Beijing, China
    • Wu, Z.C., 2001. Research on remotely sensed imagery classification using neural network based on rough sets. In: International conferences on info-tech and info-net, 29 October-1 November, Beijing, China, 279-284.
    • (2001) International Conferences on Info-tech and Info-net , pp. 279-284
    • Wu, Z.C.1
  • 36
    • 9444245312 scopus 로고    scopus 로고
    • Rough spatial interpretation
    • In: S. Tsumoto et al., eds, Berlin, Heidelberg: Springer
    • Wang, S.L., et al., 2004. Rough spatial interpretation. In: S. Tsumoto et al., eds. Rough sets and current trends in computing. Berlin, Heidelberg: Springer, 435-444.
    • (2004) Rough Sets and Current Trends in Computing , pp. 435-444
    • Wang, S.L.1
  • 37
    • 48749101538 scopus 로고    scopus 로고
    • Comparison studies on classification for remotely sensed imagery based on data mining method
    • Xiao, H. and Zhang, X.B., 2008. Comparison studies on classification for remotely sensed imagery based on data mining method. WSEAS Transactions on computers, 5 (7), 552-558.
    • (2008) WSEAS Transactions on Computers , vol.5 , Issue.7 , pp. 552-558
    • Xiao, H.1    Zhang, X.B.2
  • 39
    • 26944452400 scopus 로고    scopus 로고
    • A hybrid classifier based on rough set theory and support vector machines
    • In: L. Wang and Y. Jin, eds, Berlin, Heidelberg: Springer
    • Zhang, G.X., et al., 2005. A hybrid classifier based on rough set theory and support vector machines. In: L. Wang and Y. Jin, eds. Fuzzy systems and knowledge discovery. Berlin, Heidelberg: Springer, 1287-1296.
    • (2005) Fuzzy Systems and Knowledge Discovery , pp. 1287-1296
    • Zhang, G.X.1
  • 40
    • 42949156198 scopus 로고    scopus 로고
    • Hyperspectral RS image classification based on fractal and rough set
    • Wuhan
    • Zhan, Y.J., et al., 2007. Hyperspectral RS image classification based on fractal and rough set. In Second International Conference on Space Information Technology, Wuhan, 6795 (3), 67954F.1-67954F.6.
    • (2007) Second International Conference on Space Information Technology , vol.6795 , Issue.3 , pp. 1-6
    • Zhan, Y.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.