메뉴 건너뛰기




Volumn 34, Issue 4, 2004, Pages 546-558

Rough set rule induction for suitability assessment

Author keywords

Crop suitability assessment; Regional modeling; Rough set theory; Rule induction

Indexed keywords

ALGORITHMS; CROPS; DATA REDUCTION; DECISION SUPPORT SYSTEMS; ROUGH SET THEORY; SOILS;

EID: 23444444535     PISSN: 0364152X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00267-003-0097-z     Document Type: Article
Times cited : (16)

References (25)
  • 1
    • 0005078490 scopus 로고    scopus 로고
    • MSc thesis, Norwegian University of Science and Technology, Department of Computer and Information Science, February 1999.
    • Agotnes, T. 1999. Filtering large propositional rule sets while retaining classifier performance. MSc thesis, Norwegian University of Science and Technology, Department of Computer and Information Science, February 1999.
    • (1999) Filtering Large Propositional Rule Sets while Retaining Classifier Performance
    • Agotnes, T.1
  • 2
    • 0033570831 scopus 로고    scopus 로고
    • Combined 5 × 2 CV F-Test for comparing supervised classification learning algorithms.
    • E. Alpaydin 1999 Combined 5 × 2 CV F-Test for comparing supervised classification learning algorithms. Neural Computation 11 1885 1982
    • (1999) Neural Computation , vol.11 , pp. 1885-1982
    • Alpaydin, E.1
  • 4
    • 1642368329 scopus 로고    scopus 로고
    • Evaluating the impact of policy options on agricultural landscapes: An alternative futures approach
    • Berger, P., Bolte, J. (2004) Evaluating the impact of policy options on agricultural landscapes: an alternative futures approach. Ecological Applications. 14: 342-354
    • (2004) Ecological Applications , vol.14 , pp. 342-354
    • Berger, P.1    Bolte, J.2
  • 5
    • 0041814296 scopus 로고    scopus 로고
    • Quality of decision rules: Definitions and classification schemes for multiple rules. Pages 107-131
    • John Wiley and Sons New York
    • I. Bruha 1997 Quality of decision rules: definitions and classification schemes for multiple rules. Pages 107-131 G. Nakhaeizadeh C. C. Taylor Machine learning and statistics, the interface. John Wiley and Sons New York
    • (1997) Machine Learning and Statistics, the Interface.
    • Bruha, I.1    Nakhaeizadeh, G.2    Taylor, C.C.3
  • 6
    • 0028552275 scopus 로고
    • A statistical-topographic model for mapping climatological precipitation over mountainous terrain.
    • C. Daly R. P. Neilson D. L. Phillips 1994 A statistical-topographic model for mapping climatological precipitation over mountainous terrain. Journal of Applied Meteorology 33 140 158
    • (1994) Journal of Applied Meteorology , vol.33 , pp. 140-158
    • Daly, C.1    Neilson, R.P.2    Phillips, D.L.3
  • 7
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms.
    • T. G. Dietterich 1998 Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation 10 1895 1923
    • (1998) Neural Computation , vol.10 , pp. 1895-1923
    • Dietterich, T.G.1
  • 10
    • 18444394659 scopus 로고    scopus 로고
    • MSc thesis, Norwegian University of Science and Technology, Department of Computer and Information Science.
    • Jenssen, T. K. 1998. Refinements to Mollestad's algorithm for synthesis of default rules. MSc thesis, Norwegian University of Science and Technology, Department of Computer and Information Science.
    • (1998) Refinements to Mollestad's Algorithm for Synthesis of Default Rules
    • Jenssen, T.K.1
  • 11
    • 0016349356 scopus 로고
    • Approximation algorithms for combinatorial problems.
    • D. S. Johnson 1974 Approximation algorithms for combinatorial problems. Journal of Computer and System Sciences 9 256 278
    • (1974) Journal of Computer and System Sciences , vol.9 , pp. 256-278
    • Johnson, D.S.1
  • 19
    • 0003392222 scopus 로고    scopus 로고
    • Soil Survey Staff. title 430-VI. Natural Resources Conservation Service.
    • Soil Survey Staff. 2001. National Soil Survey Handbook, title 430-VI. Natural Resources Conservation Service.
    • (2001) National Soil Survey Handbook
  • 20
    • 0004103992 scopus 로고    scopus 로고
    • Fort Worth, Texas.
    • U. S. Department of Agriculture, Natural Resources Conservation Service. 1998. Soil Survey Geographic (SSURGO) Database. Fort Worth, Texas.
    • (1998) Soil Survey Geographic (SSURGO) Database
  • 23
    • 0028034630 scopus 로고
    • The use of artificial neural networks in a geographical information system for agricultural land-suitability assessment.
    • F. Wang 1994 The use of artificial neural networks in a geographical information system for agricultural land-suitability assessment. Environment and Planning A 26 265 284
    • (1994) Environment and Planning a , vol.26 , pp. 265-284
    • Wang, F.1
  • 24
    • 33644483788 scopus 로고    scopus 로고
    • Identification of biodiversity and other forest attributes for sustainable forest management: Siberian Forest case study
    • International Institute for Applied Systems Analysis. Laxenburg, Austria
    • Wilk, S., Flinkman, M., Michalowski, W., Nilsson, S., Slowinski, R., Susmaga, R. 1998. Identification of biodiversity and other forest attributes for sustainable forest management: Siberian Forest case study. IIASA Interim Report 98-106. International Institute for Applied Systems Analysis. Laxenburg, Austria, 23 pp.
    • (1998) IIASA Interim Report 98-106
    • Wilk, S.1    Flinkman, M.2    Michalowski, W.3    Nilsson, S.4    Slowinski, R.5    Susmaga, R.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.