-
1
-
-
0002433549
-
A framework for research and curriculum development in undergraduate mathematics education
-
J. Kaput, A. H. Schoenfeld, & E. Dubinsky (Eds.), Providence, RI: American Mathematical Society
-
Asiala, M., Brown, A., DeVries, D., Dubinsky, E., Mathews, D., & Thomas, K. (1996). A framework for research and curriculum development in undergraduate mathematics education. In J. Kaput, A. H. Schoenfeld, & E. Dubinsky (Eds.), Research in collegiate mathematics education II (pp. 1-32). Providence, RI: American Mathematical Society.
-
(1996)
Research in Collegiate Mathematics Education II
, pp. 1-32
-
-
Asiala, M.1
Brown, A.2
Devries, D.3
Dubinsky, E.4
Mathews, D.5
Thomas, K.6
-
2
-
-
85023831501
-
Why does 0.999… = 1? A perennial question and number sense
-
Beswick, K. (2004). Why does 0.999… = 1? A perennial question and number sense. Australian Mathematics Teacher, 60(4), 7-9.
-
(2004)
Australian Mathematics Teacher
, vol.60
, Issue.4
, pp. 7-9
-
-
Beswick, K.1
-
4
-
-
0343046137
-
-
Cottrill, J., Dubinsky, E., Nichols, D., Schwingendorf, K., Thomas, K., & Vidakovic, D. (1996). Understanding the limit concept: Beginning with a coordinated process schema. Journal of Mathematical Behavior, 15, 167-192.
-
Journal of Mathematical Behavior
, vol.15
, pp. 167-192
-
-
Cottrill, J.1
Dubinsky, E.2
Nichols, D.3
Schwingendorf, K.4
Thomas, K.5
Vidakovic, D.6
-
5
-
-
63349095665
-
Pre-service teachers’ mathematical reasoning as an imperative for codified conceptual pedagogy in algebra: A case study in teacher education
-
De Castro, B. (2004). Pre-service teachers’ mathematical reasoning as an imperative for codified conceptual pedagogy in algebra: A case study in teacher education. Asia Pacific Education Review, 5(2), 157-166.
-
(2004)
Asia Pacific Education Review
, vol.5
, Issue.2
, pp. 157-166
-
-
De Castro, B.1
-
6
-
-
0344130972
-
APOS: A constructivist theory of learning in undergraduate mathematics education research
-
D. Holton (Ed.), Dordrecht, The Netherlands: Kluwer
-
Dubinsky, E., & McDonald, M. A. (2001). APOS: A constructivist theory of learning in undergraduate mathematics education research. In D. Holton (Ed.), The teaching and learning of mathematics at university level: An ICMI study (pp. 273-280). Dordrecht, The Netherlands: Kluwer.
-
(2001)
The Teaching and Learning of Mathematics at University Level: An ICMI Study
, pp. 273-280
-
-
Dubinsky, E.1
McDonald, M.A.2
-
7
-
-
21844433187
-
Some historical issues and paradoxes regarding the concept of infinity: An APOS based analysis
-
Dubinsky, E., Weller, K., McDonald, M. A., & Brown, A. (2005a). Some historical issues and paradoxes regarding the concept of infinity: An APOS based analysis: Part 1. Educational Studies in Mathematics, 58, 335-359.
-
(2005)
Educational Studies in Mathematics
, vol.58
, pp. 335-359
-
-
Dubinsky, E.1
Weller, K.2
McDonald, M.A.3
Brown, A.4
-
8
-
-
27944487612
-
Some historical issues and paradoxes regarding the concept of infinity: An APOS based analysis
-
Dubinsky, E., Weller, K., McDonald, M. A., & Brown, A. (2005b). Some historical issues and paradoxes regarding the concept of infinity: An APOS based analysis: Part 2. Educational Studies in Mathematics, 60, 253-266.
-
(2005)
Educational Studies in Mathematics
, vol.60
, pp. 253-266
-
-
Dubinsky, E.1
Weller, K.2
McDonald, M.A.3
Brown, A.4
-
10
-
-
2442628556
-
Surprises from mathematics education research: Student (mis)use of mathematical definitions
-
Edwards, B., & Ward, M. (2004). Surprises from mathematics education research: Student (mis)use of mathematical definitions. American Mathematical Monthly, 111(5), 411-425.
-
(2004)
American Mathematical Monthly
, vol.111
, Issue.5
, pp. 411-425
-
-
Edwards, B.1
Ward, M.2
-
11
-
-
84954595000
-
Infinite processes in elementary mathematics: How much should we tell them?
-
Gardiner, T. (1985). Infinite processes in elementary mathematics: How much should we tell them? The Mathematical Gazette, 69, 77-87.
-
(1985)
The Mathematical Gazette
, vol.69
, pp. 77-87
-
-
Gardiner, T.1
-
12
-
-
79959491763
-
Nought point nine recurring
-
Hewitt, S. (1984). Nought point nine recurring. Mathematics Teaching, 99, 48-53.
-
(1984)
Mathematics Teaching
, vol.99
, pp. 48-53
-
-
Hewitt, S.1
-
13
-
-
85065691630
-
Conceptual and procedural knowledge in mathematics: An introductory analysis
-
J. Hiebert (Ed.), Hillsdale, NJ: Lawrence Erlbaum
-
Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of mathematics (pp. 1-27). Hillsdale, NJ: Lawrence Erlbaum.
-
(1986)
Conceptual and Procedural Knowledge: The Case of Mathematics
, pp. 1-27
-
-
Hiebert, J.1
Lefevre, P.2
-
14
-
-
79959503775
-
Exploring number: Point nine recurring
-
Hirst, K. (1990). Exploring number: Point nine recurring. Mathematics Teaching, 111, 12-13.
-
(1990)
Mathematics Teaching
, vol.111
, pp. 12-13
-
-
Hirst, K.1
-
15
-
-
0348219453
-
On fractions and non-standard representations: Pre-service teachers’ concepts
-
Khoury, H. A., & Zazkis, R. (1994). On fractions and non-standard representations: Pre-service teachers’ concepts. Educational Studies in Mathematics, 27, 191-204.
-
(1994)
Educational Studies in Mathematics
, vol.27
, pp. 191-204
-
-
Khoury, H.A.1
Zazkis, R.2
-
16
-
-
0001843691
-
Are mathematical understanding and algorithmic performance related?
-
Nesher, P. (1986). Are mathematical understanding and algorithmic performance related? For the Learning of Mathematics, 6, 3.
-
(1986)
For the Learning of Mathematics
, vol.6
, pp. 3
-
-
Nesher, P.1
-
17
-
-
3042794272
-
Can any fraction be turned into a decimal? A case study of a mathematical group discussion
-
O’Connor, M. C. (2001). “Can any fraction be turned into a decimal?” A case study of a mathematical group discussion. Educational Studies in Mathematics, 46(1/3), 143-185.
-
(2001)
Educational Studies in Mathematics
, vol.46
, Issue.1-3
, pp. 143-185
-
-
O’Connor, M.C.1
-
20
-
-
84911095797
-
Piaget’s theory
-
(G. Gellerier & J. Langer, Trans.), In P. H. Mussen (Ed.), 3rd ed., New York: J. Wiley & Sons
-
Piaget, J. (1970). Piaget’s theory (G. Gellerier & J. Langer, Trans.). In P. H. Mussen (Ed.), Carmichaels manual of child psychology (Vol. 1, 3rd ed., pp. 703-732). New York: J. Wiley & Sons.
-
(1970)
Carmichaels Manual of Child Psychology
, vol.1
, pp. 703-732
-
-
Piaget, J.1
-
21
-
-
0004112394
-
-
Chicago: The University of Chicago Press
-
Piaget, J. (1971). Biology and knowledge. Chicago: The University of Chicago Press.
-
(1971)
Biology and Knowledge
-
-
Piaget, J.1
-
22
-
-
84857065825
-
Comments on Vygotsky’s critical remarks
-
Piaget, J. (1979). Comments on Vygotsky’s critical remarks. Archives de Psychologie, 47, 237-249.
-
(1979)
Archives De Psychologie
, vol.47
, pp. 237-249
-
-
Piaget, J.1
-
23
-
-
0007383210
-
Preservice teachers ordering of decimal numbers: When more is smaller and less is larger
-
Putt, I. (1995). Preservice teachers ordering of decimal numbers: When more is smaller and less is larger. Focus on Learning Problems in Mathematics, 17(3), 1-15.
-
(1995)
Focus on Learning Problems in Mathematics
, vol.17
, Issue.3
, pp. 1-15
-
-
Putt, I.1
-
24
-
-
0001974117
-
Conceptual bases of arithmetic errors: The case of decimal fractions
-
Resnick, L., Nesher, P., Leonard, F., Magone, M., Omanson, S., & Peled, I. (1989). Conceptual bases of arithmetic errors: The case of decimal fractions. Journal for Research in Mathematics Education, 20(1), 8-27.
-
(1989)
Journal for Research in Mathematics Education
, vol.20
, Issue.1
, pp. 8-27
-
-
Resnick, L.1
Nesher, P.2
Leonard, F.3
Magone, M.4
Omanson, S.5
Peled, I.6
-
25
-
-
21244472410
-
Is 0.999… = 1?
-
Richman, F. (1999). Is 0.999… = 1? Mathematics Magazine, 72(5), 396-401.
-
(1999)
Mathematics Magazine
, vol.72
, Issue.5
, pp. 396-401
-
-
Richman, F.1
-
26
-
-
0000935350
-
Humanities students and epistemological obstacles related to limits
-
Sierpinska, A. (1987). Humanities students and epistemological obstacles related to limits. Educational Studies in Mathematics, 18, 371-397.
-
(1987)
Educational Studies in Mathematics
, vol.18
, pp. 371-397
-
-
Sierpinska, A.1
-
27
-
-
0002155120
-
Relational understanding and instrumental understanding
-
Skemp, R. R. (1976). Relational understanding and instrumental understanding. Mathematics Teaching, 77, 20-26.
-
(1976)
Mathematics Teaching
, vol.77
, pp. 20-26
-
-
Skemp, R.R.1
-
29
-
-
84954585718
-
-
A search for a constructivist approach for understanding the uncountable set
-
Stenger, C., Weller, K., Arnon, I., Dubinsky, E., & Vidakovic, D. (2008). A search for a constructivist approach for understanding the uncountable set P(N). Revista Latinoamericana de Investigation en Mathematica Educativa, 11(1), 93-125.
-
(2008)
P(N). Revista Latinoamericana De Investigation En Mathematica Educativa
, vol.11
, Issue.1
, pp. 93-125
-
-
Stenger, C.1
Weller, K.2
Arnon, I.3
Dubinsky, E.4
Vidakovic, D.5
-
30
-
-
0347050792
-
Conflicts in the learning of real numbers and limits
-
Tall, D., & Schwarzenberger, R. (1978). Conflicts in the learning of real numbers and limits. Mathematics Teaching, 82, 44-49.
-
(1978)
Mathematics Teaching
, vol.82
, pp. 44-49
-
-
Tall, D.1
Schwarzenberger, R.2
-
31
-
-
0347050719
-
Preservice elementary teachers’ misconceptions in interpreting and applying decimals
-
Thipkong, S., & Davis, E. J. (1991). Preservice elementary teachers’ misconceptions in interpreting and applying decimals. School Science and Mathematics, 91(3), 93-99.
-
(1991)
School Science and Mathematics
, vol.91
, Issue.3
, pp. 93-99
-
-
Thipkong, S.1
Davis, E.J.2
-
32
-
-
52549106461
-
The concept of repeating and non-repeating decimals at the senior high level
-
L. Steefland (Ed.), Noordwijkerhout, The Netherlands
-
Vinner, S., & Kidron, I. (1985). The concept of repeating and non-repeating decimals at the senior high level. In L. Steefland (Ed.), Proceedings of the 9th Annual Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 357-361). Noordwijkerhout, The Netherlands.
-
(1985)
Proceedings of the 9Th Annual Conference of the International Group for the Psychology of Mathematics Education
, vol.1
, pp. 357-361
-
-
Vinner, S.1
Kidron, I.2
-
33
-
-
27844554766
-
Intimations ofInfinity
-
Weller, K., Brown, A., Dubinsky, E., McDonald, M., & Stenger, C. (2004). Intimations ofInfinity. Notices of the American Mathematical Society, 51(7), 741-750.
-
(2004)
Notices of the American Mathematical Society
, vol.51
, Issue.7
, pp. 741-750
-
-
Weller, K.1
Brown, A.2
Dubinsky, E.3
McDonald, M.4
Stenger, C.5
-
34
-
-
21244462856
-
Studentperformance and attitudes in courses based on APOS theory and the ACE teaching cycle
-
A. Selden, E. Dubinsky, G. Harel, & F. Hitt (Eds.), Providence, RI: American Mathematical Society
-
Weller, K., Clark, J., Dubinsky, E., Loch, S., McDonald, M., & Merkovsky, R. (2003). Studentperformance and attitudes in courses based on APOS theory and the ACE teaching cycle. In A. Selden, E. Dubinsky, G. Harel, & F. Hitt (Eds.), Research in collegiate mathematics education V (pp. 97-131). Providence, RI: American Mathematical Society.
-
(2003)
Research in Collegiate Mathematics Education V
, pp. 97-131
-
-
Weller, K.1
Clark, J.2
Dubinsky, E.3
Loch, S.4
McDonald, M.5
Merkovsky, R.6
-
36
-
-
0035594850
-
Predications of the limit concept: An application of repertory grids
-
Williams, S. (2001). Predications of the limit concept: An application of repertory grids. Journal for Research in Mathematics Education, 32, 341-367.
-
(2001)
Journal for Research in Mathematics Education
, vol.32
, pp. 341-367
-
-
Williams, S.1
|