메뉴 건너뛰기




Volumn , Issue , 2010, Pages

Model selection for support vector machines: Advantages and disadvantages of the Machine Learning Theory

Author keywords

[No Author keywords available]

Indexed keywords

STATISTICAL METHODS;

EID: 79959401322     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2010.5596450     Document Type: Conference Paper
Times cited : (89)

References (30)
  • 1
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • V. Vapnik, "An overview of statistical learning theory", IEEE Transactions on Neural Networks, vol. 10, pp. 988-999, 1999.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , pp. 988-999
    • Vapnik, V.1
  • 2
    • 0036129250 scopus 로고    scopus 로고
    • Asymptotic convergence of an SMO algorithm without any assumptions
    • C.J. Lin, "Asymptotic convergence of an SMO algorithm without any assumptions", IEEE Transactions on Neural Networks, vol. 13, pp. 248-250, 2002.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , pp. 248-250
    • Lin, C.J.1
  • 6
    • 0000622640 scopus 로고    scopus 로고
    • Margin distribution and soft margin
    • edited by A. Smola, P. Bartlett, B. Schoelkopf, D. Schuurmans, The MIT Press
    • J. Shawe-Taylor, N. Cristianini, "Margin distribution and soft margin", in "Advances in Large Margin Classifiers", edited by A. Smola, P. Bartlett, B. Schoelkopf, D. Schuurmans, The MIT Press, 2000.
    • (2000) Advances in Large Margin Classifiers
    • Shawe-Taylor, J.1    Cristianini, N.2
  • 7
    • 0037382208 scopus 로고    scopus 로고
    • Evaluation of simple performance measures for tuning SVM parameters
    • K. Duan, S. S. Keerthy, A. Poo, " Evaluation of simple performance measures for tuning SVM parameters", Neurocomputing, vol. 51, pp. 41-59, 2003.
    • (2003) Neurocomputing , vol.51 , pp. 41-59
    • Duan, K.1    Keerthy, S.S.2    Poo, A.3
  • 13
    • 1842420581 scopus 로고    scopus 로고
    • General conditions for predictivity in learning theory
    • T. Poggio, R. Rifkin, S. Mukherjee, P. Niyogi, "General conditions for predictivity in learning theory", Nature, vol. 428, pp. 419-422, 2004.
    • (2004) Nature , vol.428 , pp. 419-422
    • Poggio, T.1    Rifkin, R.2    Mukherjee, S.3    Niyogi, P.4
  • 15
    • 1342330535 scopus 로고    scopus 로고
    • Is cross-validation valid for small-sample microarray classification?
    • U.M. Braga-Neto, E.R. Dougherty, "Is cross-validation valid for small-sample microarray classification?", Bioinformatics, vol. 20, pp. 374-380, 2004.
    • (2004) Bioinformatics , vol.20 , pp. 374-380
    • Braga-Neto, U.M.1    Dougherty, E.R.2
  • 16
    • 50349090268 scopus 로고    scopus 로고
    • Cross-validation and bootstrapping are unreliable in small sample classification
    • A. Isaksson, M. Wallman, H. Goeransson, M.G. Gustafsson, "Cross-validation and bootstrapping are unreliable in small sample classification", Pattern Recognition Letters, vol. 29, pp. 1960-1965, 2008.
    • (2008) Pattern Recognition Letters , vol.29 , pp. 1960-1965
    • Isaksson, A.1    Wallman, M.2    Goeransson, H.3    Gustafsson, M.G.4
  • 18
    • 42249094907 scopus 로고    scopus 로고
    • Support Vector Machine Solvers
    • edited by L. Bottou, O. Chapelle, D. DeCoste, J. Weston, The MIT Press
    • L. Bottou, C.J. Lin, " Support Vector Machine Solvers", in "Large Scale Learning Machines", edited by L. Bottou, O. Chapelle, D. DeCoste, J. Weston, The MIT Press, pp. 1-28, 2007.
    • (2007) Large Scale Learning Machines , pp. 1-28
    • Bottou, L.1    Lin, C.J.2
  • 20
    • 56449098486 scopus 로고    scopus 로고
    • Training robust support vector machines with smooth ramp loss in the primal space
    • L. Wang, H. Jia, J. Li, "Training robust support vector machines with smooth ramp loss in the primal space", Neurocomputing, vol. 71, pp. 3020-3025, 2008.
    • (2008) Neurocomputing , vol.71 , pp. 3020-3025
    • Wang, L.1    Jia, H.2    Li, J.3
  • 24
    • 15844413351 scopus 로고    scopus 로고
    • A Comprehensive Evaluation of Multicategory Classification Methods for Microarray Gene Expression Cancer Diagnosis
    • A. Statnikov, C.F. Aliferis, I. Tsamardinos, D. Hardin, S. Levy. "A Comprehensive Evaluation of Multicategory Classification Methods for Microarray Gene Expression Cancer Diagnosis", Bioinformatics, vol. 21, pp. 631-643, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 631-643
    • Statnikov, A.1    Aliferis, C.F.2    Tsamardinos, I.3    Hardin, D.4    Levy, S.5
  • 26
    • 61849142212 scopus 로고    scopus 로고
    • Nearly homogeneous multi-partitioning with a deterministic generator
    • M. Aupetit, "Nearly homogeneous multi-partitioning with a deterministic generator", Neurocomputing, vol. 72, pp. 1379-1389, 2009.
    • (2009) Neurocomputing , vol.72 , pp. 1379-1389
    • Aupetit, M.1
  • 27
    • 22544475586 scopus 로고    scopus 로고
    • GEMS: A System for Automated Cancer Diagnosis and Biomarker Discovery from Microarray Gene Expression Data
    • A. Statnikov, I. Tsamardinos, Y. Dosbayev, C.F. Aliferis, "GEMS: A System for Automated Cancer Diagnosis and Biomarker Discovery from Microarray Gene Expression Data", International Journal of Medical Informatics, vol. 74, pp. 491-503, 2005.
    • (2005) International Journal of Medical Informatics , vol.74 , pp. 491-503
    • Statnikov, A.1    Tsamardinos, I.2    Dosbayev, Y.3    Aliferis, C.F.4
  • 30
    • 34247849152 scopus 로고    scopus 로고
    • Training a Support Vector Machine in the Primal
    • O. Chapelle, "Training a Support Vector Machine in the Primal", Neural Computation, vol. 19, pp. 1155-1178, 2007.
    • (2007) Neural Computation , vol.19 , pp. 1155-1178
    • Chapelle, O.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.