메뉴 건너뛰기




Volumn 67, Issue 2, 2011, Pages 629-635

Likelihood Methods for Binary Responses of Present Components in a Cluster

Author keywords

Bridge density; Clustered data; Logistic link; Random effects

Indexed keywords

RANDOM PROCESSES; REGRESSION ANALYSIS; SAMPLING;

EID: 79959363634     PISSN: 0006341X     EISSN: 15410420     Source Type: Journal    
DOI: 10.1111/j.1541-0420.2010.01483.x     Document Type: Article
Times cited : (9)

References (15)
  • 3
    • 0033288546 scopus 로고    scopus 로고
    • Development of a classification system for periodontal diseases and conditions
    • Armitage, G. C. (1999). Development of a classification system for periodontal diseases and conditions. Annals of Periodontology 4, 1-6.
    • (1999) Annals of Periodontology , vol.4 , pp. 1-6
    • Armitage, G.C.1
  • 6
    • 0041833619 scopus 로고    scopus 로고
    • A Bayesian approach for joint modeling of cluster size and subunit-specific outcomes
    • Dunson, D. B., Chen, Z., and Harry, J. (2003). A Bayesian approach for joint modeling of cluster size and subunit-specific outcomes. Biometrics 59, 521-530.
    • (2003) Biometrics , vol.59 , pp. 521-530
    • Dunson, D.B.1    Chen, Z.2    Harry, J.3
  • 9
    • 77649173768 scopus 로고
    • Longitudinal data analysis using generalized linear models
    • Liang, K. Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika 73, 13-22.
    • (1986) Biometrika , vol.73 , pp. 13-22
    • Liang, K.Y.1    Zeger, S.L.2
  • 10
    • 77949750822 scopus 로고    scopus 로고
    • Association models for clustered data with binary and continuous responses
    • Lin, L., Bandyopadhyay, D., Lipsitz, S. R., and Sinha, D. (2009). Association models for clustered data with binary and continuous responses. Biometrics 66, 287-293.
    • (2009) Biometrics , vol.66 , pp. 287-293
    • Lin, L.1    Bandyopadhyay, D.2    Lipsitz, S.R.3    Sinha, D.4
  • 11
    • 34047242616 scopus 로고    scopus 로고
    • Properties of analysis methods that account for clustering in volume-outcome studies when the primary perdictor is cluster size
    • Panageas, K. S., Schrag, D., Localio, A. R., Venkatraman, E. S., and Begg, C. B. (2007). Properties of analysis methods that account for clustering in volume-outcome studies when the primary perdictor is cluster size. Statistics in Medicine 26, 2017-2035.
    • (2007) Statistics in Medicine , vol.26 , pp. 2017-2035
    • Panageas, K.S.1    Schrag, D.2    Localio, A.R.3    Venkatraman, E.S.4    Begg, C.B.5
  • 12
    • 3843067509 scopus 로고    scopus 로고
    • Matching conditional and marginal shapes in binary mixed-effects models using a bridge distribution
    • Wang, Z. and Louis, T. A. (2003). Matching conditional and marginal shapes in binary mixed-effects models using a bridge distribution. Biometrika 90, 765-775.
    • (2003) Biometrika , vol.90 , pp. 765-775
    • Wang, Z.1    Louis, T.A.2
  • 13
    • 0002644952 scopus 로고
    • Maximum likelihood estimation under mis-specified models
    • White, H. (1982). Maximum likelihood estimation under mis-specified models. Econometrica 50, 1-26.
    • (1982) Econometrica , vol.50 , pp. 1-26
    • White, H.1
  • 14
    • 0037366607 scopus 로고    scopus 로고
    • Marginal analysis of clustered data when the cluster size is informative
    • Williamson, J. M., Datta, S., and Satten, G. A. (2003). Marginal analysis of clustered data when the cluster size is informative. Biometrics 59, 36-42.
    • (2003) Biometrics , vol.59 , pp. 36-42
    • Williamson, J.M.1    Datta, S.2    Satten, G.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.