메뉴 건너뛰기




Volumn 6791 LNCS, Issue PART 1, 2011, Pages 1-9

Transformation equivariant Boltzmann machines

Author keywords

Boltzmann machines; convolutional structures; image modeling; steerable filters; transformation equivariant representations; transformation invariance

Indexed keywords

BOLTZMANN MACHINES; CONVOLUTIONAL STRUCTURES; IMAGE MODELING; STEERABLE FILTERS; TRANSFORMATION EQUIVARIANT REPRESENTATIONS; TRANSFORMATION INVARIANCE;

EID: 79959362886     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-21735-7_1     Document Type: Conference Paper
Times cited : (43)

References (15)
  • 3
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278-2324 (1998)
    • (1998) Proc. IEEE , vol.86 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 4
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: ICML (2009)
    • ICML (2009)
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 5
    • 35148867545 scopus 로고    scopus 로고
    • Towards scalable representations of visual categories: Learning a hierarchy of parts
    • Fidler, S., Leonardis, A.: Towards scalable representations of visual categories: Learning a hierarchy of parts. In: CVPR (2007)
    • CVPR (2007)
    • Fidler, S.1    Leonardis, A.2
  • 6
    • 78149306047 scopus 로고    scopus 로고
    • 3D object recognition using deep belief nets
    • Nair, V., Hinton, G.E.: 3D object recognition using deep belief nets. In: NIPS 22 (2009)
    • (2009) NIPS , vol.22
    • Nair, V.1    Hinton, G.E.2
  • 7
    • 85162052854 scopus 로고    scopus 로고
    • Generating more realistic images using gated MRF's
    • Ranzato, M., Mnih, V., Hinton, G.E.: Generating more realistic images using gated MRF's. In: NIPS 23 (2010)
    • (2010) NIPS , vol.23
    • Ranzato, M.1    Mnih, V.2    Hinton, G.E.3
  • 8
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comp. 18, 1527-1554 (2006)
    • (2006) Neural Comp. , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 9
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607-609 (1996)
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 10
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60, 91-110 (2004)
    • (2004) IJCV , vol.60 , pp. 91-110
    • Lowe, D.G.1
  • 11
    • 70450134221 scopus 로고    scopus 로고
    • Unsupervised structure learning: Hierarchical recursive composition, suspicious coincidence and competitive exclusion
    • Zhu, L., Lin, C., Huang, H., Chen, Y., Yuille, A.: Unsupervised structure learning: Hierarchical recursive composition, suspicious coincidence and competitive exclusion. In: ECCV (2008)
    • ECCV (2008)
    • Zhu, L.1    Lin, C.2    Huang, H.3    Chen, Y.4    Yuille, A.5
  • 12
    • 54949106570 scopus 로고    scopus 로고
    • Image modelling and denoising with orientationadapted Gaussian scale mixtures
    • Hammond, D., Simoncelli, E.P.: Image modelling and denoising with orientationadapted Gaussian scale mixtures. IEEE Trans. IP 17, 2089-2101 (2008)
    • (2008) IEEE Trans. IP , vol.17 , pp. 2089-2101
    • Hammond, D.1    Simoncelli, E.P.2
  • 13
    • 77953520240 scopus 로고    scopus 로고
    • Learning to represent spatial transformations with factored higher-order Boltzmann machines
    • Memisevic, R., Hinton, G.E.: Learning to represent spatial transformations with factored higher-order Boltzmann machines. Neural Comp. 22, 1473-1492 (2010)
    • (2010) Neural Comp , vol.22 , pp. 1473-1492
    • Memisevic, R.1    Hinton, G.E.2
  • 15
    • 0001580144 scopus 로고
    • Learning to segment images using dynamic feature binding
    • Mozer, M.C., Zemel, R.S., Behrmann, M., Williams, C.K.I.: Learning to segment images using dynamic feature binding. Neural Comp. 4, 650-665 (1992)
    • (1992) Neural Comp , vol.4 , pp. 650-665
    • Mozer, M.C.1    Zemel, R.S.2    Behrmann, M.3    Williams, C.K.I.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.