메뉴 건너뛰기




Volumn 6731 LNCS, Issue , 2011, Pages 1-15

Topographic mapping of dissimilarity data

Author keywords

[No Author keywords available]

Indexed keywords

DATA FORMAT; DISSIMILARITY MEASURES; ELECTRONIC DATA; FLEXIBLE TOOL; HIGH DIMENSIONAL DATA; NON-EUCLIDEAN; TIME COMPLEXITY; TOPOGRAPHIC MAPPING; DISSIMILARITY DATUM;

EID: 79959294512     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-21566-7_1     Document Type: Conference Paper
Times cited : (7)

References (31)
  • 1
    • 61849124176 scopus 로고    scopus 로고
    • Patch clustering for massive data sets
    • Alex, N., Hasenfuss, A., Hammer, B.: Patch clustering for massive data sets. Neurocomputing 72(7-9), 1455-1469 (2009).
    • (2009) Neurocomputing , vol.72 , Issue.7-9 , pp. 1455-1469
    • Alex, N.1    Hasenfuss, A.2    Hammer, B.3
  • 4
    • 40849145323 scopus 로고    scopus 로고
    • Batch kernel SOM and related Laplacian methods for social network analysis
    • Boulet, R., Jouve, B., Rossi, F., Villa-Vialaneix, N.: Batch kernel SOM and related Laplacian methods for social network analysis. Neurocomputing 71(7-9), 1257-1273 (2008).
    • (2008) Neurocomputing , vol.71 , Issue.7-9 , pp. 1257-1273
    • Boulet, R.1    Jouve, B.2    Rossi, F.3    Villa-Vialaneix, N.4
  • 6
    • 85153959666 scopus 로고
    • Convergence properties of the k-means algorithm
    • Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) MIT, Cambridge
    • Bottou, L., Bengio, Y.: Convergence properties of the k-means algorithm. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) NIPS 1994, pp. 585-592. MIT, Cambridge (1995).
    • (1995) NIPS 1994 , pp. 585-592
    • Bottou, L.1    Bengio, Y.2
  • 7
    • 0345404393 scopus 로고    scopus 로고
    • Theoretical aspects of the SOM algorithm
    • DOI 10.1016/S0925-2312(98)00034-4, PII S0925231298000344
    • Cottrell, M., Fort, J.C., Pag̀es, G.: Theoretical aspects of the SOM algorithm. Neurocomputing 21, 119-138 (1999). (Pubitemid 28526817)
    • (1998) Neurocomputing , vol.21 , Issue.1-3 , pp. 119-138
    • Cottrell, M.1    Fort, J.C.2    Pages, G.3
  • 8
    • 33746583167 scopus 로고    scopus 로고
    • Batch and median neural gas
    • DOI 10.1016/j.neunet.2006.05.018, PII S0893608006000815
    • Cottrell, M., Hammer, B., Hasenfuss, A., Villmann, T.: Batch and median neural gas. Neural Networks 19, 762-771 (2006). (Pubitemid 44148955)
    • (2006) Neural Networks , vol.19 , Issue.6-7 , pp. 762-771
    • Cottrell, M.1    Hammer, B.2    Hasenfuss, A.3    Villmann, T.4
  • 10
    • 33745902277 scopus 로고    scopus 로고
    • Advantages and drawbacks of the Batch Kohonen algorithm
    • Verleysen, M. (ed.) D Facto
    • Fort, J.-C., Letŕemy, P., Cottrell, M.: Advantages and drawbacks of the Batch Kohonen algorithm. In: Verleysen, M. (ed.) ESANN 2002, D Facto, pp. 223-230 (2002).
    • (2002) ESANN 2002 , pp. 223-230
    • Fort, J.-C.1    Letŕemy, P.2    Cottrell, M.3
  • 11
    • 0043122944 scopus 로고    scopus 로고
    • ExPASy: The proteomics server for in-depth protein knowledge and analysis
    • DOI 10.1093/nar/gkg563
    • Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R.D., Bairoch, A.: Ex- PASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 31, 3784-3788 (2003). (Pubitemid 37442246)
    • (2003) Nucleic Acids Research , vol.31 , Issue.13 , pp. 3784-3788
    • Gasteiger, E.1    Gattiker, A.2    Hoogland, C.3    Ivanyi, I.4    Appel, R.D.5    Bairoch, A.6
  • 12
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • DOI 10.1126/science.1136800
    • Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315, 972-976 (2007). (Pubitemid 46281181)
    • (2007) Science , vol.315 , Issue.5814 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 14
    • 79953037235 scopus 로고    scopus 로고
    • Relational generative topographic map
    • Gisbrecht, A., Mokbel, B., Hammer, B.: Relational generative topographic map. Neurocomputing 74, 1359-1371 (2011).
    • (2011) Neurocomputing , vol.74 , pp. 1359-1371
    • Gisbrecht, A.1    Mokbel, B.2    Hammer, B.3
  • 15
    • 78149341007 scopus 로고    scopus 로고
    • Topographic mapping of large dissimilarity datasets
    • Hammer, B., Hasenfuss, A.: Topographic mapping of large dissimilarity datasets. Neural Computation 22(9), 2229-2284 (2010).
    • (2010) Neural Computation , vol.22 , Issue.9 , pp. 2229-2284
    • Hammer, B.1    Hasenfuss, A.2
  • 16
    • 67650283861 scopus 로고    scopus 로고
    • Median topographic maps for biological data sets
    • Biehl, M., Hammer, B., Verleysen,M., Villmann, T. (eds.) Similarity-Based Clustering Springer, Heidelberg
    • Hammer, B., Hasenfuss, A., Rossi, F.: Median topographic maps for biological data sets. In: Biehl, M., Hammer, B., Verleysen,M., Villmann, T. (eds.) Similarity-Based Clustering. LNCS, vol. 5400, pp. 92-117. Springer, Heidelberg (2009).
    • (2009) LNCS , vol.5400 , pp. 92-117
    • Hammer, B.1    Hasenfuss, A.2    Rossi, F.3
  • 17
    • 0028667335 scopus 로고
    • Nerf c-means: Non-Euclidean relational fuzzy clustering
    • DOI 10.1016/0031-3203(94)90119-8
    • Hathaway, R.J., Bezdek, J.C.: Nerf c-means: Non-Euclidean relational fuzzy clustering. Pattern Recognition 27(3), 429-437 (1994). (Pubitemid 124017421)
    • (1994) Pattern Recognition , vol.27 , Issue.3 , pp. 429-437
    • Hathaway, R.J.1    Bezdek, J.C.2
  • 18
    • 0035506768 scopus 로고    scopus 로고
    • Self-organizing maps, vector quantization, and mixture modeling
    • DOI 10.1109/72.963766, PII S1045922701055436
    • Heskes, T.: Self-organizing maps, vector quantization, and mixture modeling. IEEE Transactions on Neural Networks 12, 1299-1305 (2001). (Pubitemid 33106035)
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.6 , pp. 1299-1305
    • Heskes, T.1
  • 19
    • 50249164320 scopus 로고    scopus 로고
    • Visual analytics: Scope and challenges
    • Simoff, S., Boehlen, M.H., Mazeika, A. (eds.) Visual Data Mining: Theory, Techniques and Tools for Visual Analytics Springer, Heidelberg
    • Keim, D.A., Mansmann, F., Schneidewind, J., Thomas, J., Ziegler, H.: Visual analytics: Scope and challenges. In: Simoff, S., Boehlen, M.H., Mazeika, A. (eds.) Visual Data Mining: Theory, Techniques and Tools for Visual Analytics. LNCS, Springer, Heidelberg (2008).
    • (2008) LNCS
    • Keim, D.A.1    Mansmann, F.2    Schneidewind, J.3    Thomas, J.4    Ziegler, H.5
  • 21
    • 0036790769 scopus 로고    scopus 로고
    • How to make large self-organizing maps for nonvectorial data
    • Kohonen, T., Somervuo, P.: How to make large self-organizing maps for nonvectorial data. Neural Networks 15, 945-952 (2002).
    • (2002) Neural Networks , vol.15 , pp. 945-952
    • Kohonen, T.1    Somervuo, P.2
  • 22
    • 0019189775 scopus 로고
    • Quantitative analysis of 6985 digitized trypsin G-banded human metaphase chromosomes
    • Lundsteen, C., J-Phillip, Granum, E.: Quantitative analysis of 6985 digitized trypsin g-banded human metaphase chromosomes. Clinical Genetics 18, 355-370 (1980). (Pubitemid 11253841)
    • (1980) Clinical Genetics , vol.18 , Issue.5 , pp. 355-370
    • Lundsteen, C.1    Philip, J.2    Granum, E.3
  • 23
    • 0027632248 scopus 로고
    • Neuralgas network for vector quantization and its application to time-series prediction
    • Martinetz, T., Berkovich, S., Schulten, K.: Neuralgas Network for Vector Quantization and its Application to Time-Series Prediction. IEEE-Transactions on Neural Networks 4(4), 558-569 (1993).
    • (1993) IEEE -Transactions on Neural Networks , vol.4 , Issue.4 , pp. 558-569
    • Martinetz, T.1    Berkovich, S.2    Schulten, K.3
  • 24
    • 0029921179 scopus 로고    scopus 로고
    • Quantifying the local reliability of a sequence alignment
    • Mevissen, H., Vingron,M.: Quantifying the local reliability of a sequence alignment. Protein Engineering 9, 127-132 (1996). (Pubitemid 26119293)
    • (1996) Protein Engineering , vol.9 , Issue.2 , pp. 127-132
    • Mevissen, H.Th.1    Vingron, M.2
  • 25
    • 33745360257 scopus 로고    scopus 로고
    • Edit distance-based kernel functions for structural pattern classification
    • DOI 10.1016/j.patcog.2006.04.012, PII S0031320306001609
    • Neuhaus, M., Bunke, H.: Edit distance based kernel functions for structural pattern classification. Pattern Recognition 39(10), 1852-1863 (2006). (Pubitemid 43947095)
    • (2006) Pattern Recognition , vol.39 , Issue.10 , pp. 1852-1863
    • Neuhaus, M.1    Bunke, H.2
  • 26
    • 16244407276 scopus 로고    scopus 로고
    • Hyperbolic self-organizing maps for semantic navigation
    • Dietterich, T., Becker, S., Ghahramani, Z. (eds.) MIT Press, Cambridge
    • Ontrup, J., Ritter, H.: Hyperbolic self-organizing maps for semantic navigation. In: Dietterich, T., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems, vol. 14, pp. 1417-1424. MIT Press, Cambridge (2001).
    • (2001) Advances in Neural Information Processing Systems , vol.14 , pp. 1417-1424
    • Ontrup, J.1    Ritter, H.2
  • 27
    • 0001874070 scopus 로고
    • Quadratic programming with one negative eigenvalue is NP hard
    • Pardalos, P.M., Vavasis, S.A.: Quadratic programming with one negative eigenvalue is NP hard. Journal of Global Optimization 1, 15-22 (1991).
    • (1991) Journal of Global Optimization , vol.1 , pp. 15-22
    • Pardalos, P.M.1    Vavasis, S.A.2
  • 28
    • 84899010839 scopus 로고    scopus 로고
    • Using the Nystr̈om method to speed up kernel machines
    • MIT Press, Cambridge
    • Williams, C., Seeger, M.: Using the Nystr̈om method to speed up kernel machines. In: Advances in Neural Information Processing Systems, vol. 13, pp. 682-688. MIT Press, Cambridge (2001).
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 682-688
    • Williams, C.1    Seeger, M.2
  • 29
    • 0036128861 scopus 로고    scopus 로고
    • ViSOM-a novel method for multivariate data projection and structure visualization
    • DOI 10.1109/72.977314, PII S1045922702003508
    • Yin, H.: ViSOM - A novel method for multivariate data projection and structure visualisation. IEEE Trans. on Neural Networks 13(1), 237-243 (2002). (Pubitemid 34236851)
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.1 , pp. 237-243
    • Yin, H.1
  • 30
    • 33746596561 scopus 로고    scopus 로고
    • On the equivalence between kernel self-organising maps and self-organising mixture density networks
    • DOI 10.1016/j.neunet.2006.05.007, PII S0893608006000748
    • Yin, H.: On the equivalence between kernel self-organising maps and self-organising mixture density networks. Neural Networks 19(6-7), 780-784 (2006). (Pubitemid 44148949)
    • (2006) Neural Networks , vol.19 , Issue.6-7 , pp. 780-784
    • Yin, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.