-
1
-
-
12844278044
-
The oxidative environment and protein damage
-
Davies MJ. The oxidative environment and protein damage. Biochimica et Biophysica Acta. 2005;1703:93-109.
-
(2005)
Biochimica et Biophysica Acta
, vol.1703
, pp. 93-109
-
-
Davies, M.J.1
-
2
-
-
0028852816
-
Oxidation of methiononyl residues in proteins: tools, targets, and reversal
-
Vogt W. Oxidation of methiononyl residues in proteins: tools, targets, and reversal. Free Radical Biology and Medicine. 1995;18:93-105.
-
(1995)
Free Radical Biology and Medicine
, vol.18
, pp. 93-105
-
-
Vogt, W.1
-
3
-
-
0035818520
-
Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals
-
Moskovitz J, Bar-Noy S, Williams WM, Requena J, Berlett BS, Stadtman ER. Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. Proceedings of the National Academy of Sciences, U S A. 2001;98:12920-5.
-
(2001)
Proceedings of the National Academy of Sciences, U S A
, vol.98
, pp. 12920-12925
-
-
Moskovitz, J.1
Bar-Noy, S.2
Williams, W.M.3
Requena, J.4
Berlett, B.S.5
Stadtman, E.R.6
-
4
-
-
0030841350
-
Protein oxidation in aging, disease, and oxidative stress
-
Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. Journal of Biological Chemistry. 1997;372:20313-6.
-
(1997)
Journal of Biological Chemistry
, vol.372
, pp. 20313-20316
-
-
Berlett, B.S.1
Stadtman, E.R.2
-
5
-
-
12844268130
-
Methionine oxidation and aging
-
Stadtman ER, Van Remmen H, Richardson A, Wehr NB, Levine RL. Methionine oxidation and aging. Biochimica et Biophysica Acta. 2005;1703:135-40.
-
(2005)
Biochimica et Biophysica Acta
, vol.1703
, pp. 135-140
-
-
Stadtman, E.R.1
Van Remmen, H.2
Richardson, A.3
Wehr, N.B.4
Levine, R.L.5
-
6
-
-
0034456721
-
Oxidation of methionine in proteins: roles in antioxidant defense and cellular regulation
-
Levine RL, Moskovitz J, Stadtman ER. Oxidation of methionine in proteins: roles in antioxidant defense and cellular regulation. IUBMB Life. 2000;50:301-7.
-
(2000)
IUBMB Life
, vol.50
, pp. 301-307
-
-
Levine, R.L.1
Moskovitz, J.2
Stadtman, E.R.3
-
7
-
-
47649096893
-
Origin and evolution of the protein-repairing enzymes methionine sulphoxide reductases
-
Zhang X-H, Weissbach H. Origin and evolution of the protein-repairing enzymes methionine sulphoxide reductases. Biological Reviews. 2008;83:249-57.
-
(2008)
Biological Reviews
, vol.83
, pp. 249-257
-
-
Zhang, X.-H.1
Weissbach, H.2
-
8
-
-
32444439989
-
Novel organic hydroperoxide-sensing and responding mechanisms for OhrR, a major bacterial sensor and regulator of organic hydroperoxide stress
-
Panmanee W, Vattanaviboon P, Poole LB, Mongkolsuk S. Novel organic hydroperoxide-sensing and responding mechanisms for OhrR, a major bacterial sensor and regulator of organic hydroperoxide stress. Journal of Bacteriology. 2006;188:1389-95.
-
(2006)
Journal of Bacteriology
, vol.188
, pp. 1389-1395
-
-
Panmanee, W.1
Vattanaviboon, P.2
Poole, L.B.3
Mongkolsuk, S.4
-
9
-
-
34547399134
-
A complex thiolate switch regulates the Bacillus subtilis organic peroxide sensor OhrR. Proceedings of the National Academy of Sciences
-
Lee JW, Soonsanga S, Helmann JD. A complex thiolate switch regulates the Bacillus subtilis organic peroxide sensor OhrR. Proceedings of the National Academy of Sciences, U S A. 2007;104:8743-8.
-
(2007)
U S A
, vol.104
, pp. 8743-8748
-
-
Lee, J.W.1
Soonsanga, S.2
Helmann, J.D.3
-
10
-
-
33750299450
-
Protein tyrosine phosphatases: from genes, to function, to disease
-
Tonks NK. Protein tyrosine phosphatases: from genes, to function, to disease. Nature Review Molecular and Cell Biology. 2006;7:833-46.
-
(2006)
Nature Review Molecular and Cell Biology
, vol.7
, pp. 833-846
-
-
Tonks, N.K.1
-
11
-
-
13244283230
-
Enhanced dephosphorylation of cAMP-dependent protein kinase by oxidation and thiol modification
-
Humphries KM, Deal MS, Taylor SS. Enhanced dephosphorylation of cAMP-dependent protein kinase by oxidation and thiol modification. Journal of Biological Chemistry. 2005;280:2750-8.
-
(2005)
Journal of Biological Chemistry
, vol.280
, pp. 2750-2758
-
-
Humphries, K.M.1
Deal, M.S.2
Taylor, S.S.3
-
12
-
-
33746049192
-
Redox regulation of MAP kinase phosphatase 3
-
Seth D, Rudolph J. Redox regulation of MAP kinase phosphatase 3. Biochenistry. 2006;45:8476-87.
-
(2006)
Biochenistry
, vol.45
, pp. 8476-8487
-
-
Seth, D.1
Rudolph, J.2
-
13
-
-
70349446465
-
Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation
-
Owusu-Ansah E, Banerjee U. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature. 2009;461:537-41.
-
(2009)
Nature
, vol.461
, pp. 537-541
-
-
Owusu-Ansah, E.1
Banerjee, U.2
-
14
-
-
34548695863
-
Cysteine redox sensor in PKGIa enables oxidant-induced activation
-
Burgoyne JR, Madhani M, Cuello F, et al. Cysteine redox sensor in PKGIa enables oxidant-induced activation. Science. 2007;317:1393-7.
-
(2007)
Science
, vol.317
, pp. 1393-1397
-
-
Burgoyne, J.R.1
Madhani, M.2
Cuello, F.3
-
15
-
-
2542464938
-
Two enzymes in one: two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function
-
Jang HH, Lee KO, Chi YH, et al. Two enzymes in one: two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell. 2004;117:625-35.
-
(2004)
Cell
, vol.117
, pp. 625-635
-
-
Jang, H.H.1
Lee, K.O.2
Chi, Y.H.3
-
16
-
-
0034991998
-
Activation of the redox-regulated molecular chaperone Hsp33-a two-step mechanism
-
Graumann J, Lilie H, Tang X, et al. Activation of the redox-regulated molecular chaperone Hsp33-a two-step mechanism. Structure. 2001;9:377-87.
-
(2001)
Structure
, vol.9
, pp. 377-387
-
-
Graumann, J.1
Lilie, H.2
Tang, X.3
-
17
-
-
0037082129
-
Peptide methionine sulfoxide reductase: structure, mechanism of action, and biological function
-
Weissbach H, Etienne F, Hoshi T, et al. Peptide methionine sulfoxide reductase: structure, mechanism of action, and biological function. Archives of Biochemistry and Biophysics. 2002;397:172-8.
-
(2002)
Archives of Biochemistry and Biophysics
, vol.397
, pp. 172-178
-
-
Weissbach, H.1
Etienne, F.2
Hoshi, T.3
-
18
-
-
12844264123
-
Methionine sulfoxide reductases: history and cellular role in protecting against oxidative damage
-
Weissbach H, Resnick L, Brot N. Methionine sulfoxide reductases: history and cellular role in protecting against oxidative damage. Biochimica et Biophysica Acta. 2005;1703:203-12.
-
(2005)
Biochimica et Biophysica Acta
, vol.1703
, pp. 203-212
-
-
Weissbach, H.1
Resnick, L.2
Brot, N.3
-
19
-
-
0025777461
-
Biochemistry of methionine sulfoxide residues in proteins
-
Brot N, Weissbach H. Biochemistry of methionine sulfoxide residues in proteins. Biofactors. 1991;3:91-6.
-
(1991)
Biofactors
, vol.3
, pp. 91-96
-
-
Brot, N.1
Weissbach, H.2
-
20
-
-
34547850263
-
Studies on the reducing systems for plant and animal thioredoxin-independent methionine sulfoxide reductases B
-
Ding D, Sagher D, Laugier E, Rey P, Weissbach H, Zhang XH. Studies on the reducing systems for plant and animal thioredoxin-independent methionine sulfoxide reductases B. Biochemical and Biophysical Research Communications. 2007;361:629-33.
-
(2007)
Biochemical and Biophysical Research Communications
, vol.361
, pp. 629-633
-
-
Ding, D.1
Sagher, D.2
Laugier, E.3
Rey, P.4
Weissbach, H.5
Zhang, X.H.6
-
22
-
-
0018800894
-
The oxidative inactivation of human alpha-1-proteinase inhibitor
-
Johnson D, Travis J. The oxidative inactivation of human alpha-1-proteinase inhibitor. Further evidence for methionine at the reactive center. Journal of Biological Chemistry. 1979;254:4022-6.
-
(1979)
Journal of Biological Chemistry
, vol.254
, pp. 4022-4026
-
-
Johnson, D.1
Travis, J.2
-
23
-
-
0020622108
-
Human methionine sulfoxide-peptide reductase, an enzyme capable of reactivating oxidized alpha-1-proteinase inhibitor in vitro
-
Carp H, Janoff A, Abrams W, et al. Human methionine sulfoxide-peptide reductase, an enzyme capable of reactivating oxidized alpha-1-proteinase inhibitor in vitro. American Review of Respiratory Diseases. 1983;127:301-5.
-
(1983)
American Review of Respiratory Diseases
, vol.127
, pp. 301-305
-
-
Carp, H.1
Janoff, A.2
Abrams, W.3
-
24
-
-
0030954860
-
Modulation of potassium channel function by methionine oxidation and reduction
-
Ciorba MA, Heinemann SH, Weissbach H, Brot N, Hoshi T. Modulation of potassium channel function by methionine oxidation and reduction. Proceedings of the National Academy of Sciences U S A. 1997;94:9932-7.
-
(1997)
Proceedings of the National Academy of Sciences U S A
, vol.94
, pp. 9932-9937
-
-
Ciorba, M.A.1
Heinemann, S.H.2
Weissbach, H.3
Brot, N.4
Hoshi, T.5
-
25
-
-
50449086363
-
Methionine oxidation impairs reverse cholesterol transport by apolipoprotein A-I
-
Shao B, Cavigiolio G, Brot N, Oda MN, Heinecke JW. Methionine oxidation impairs reverse cholesterol transport by apolipoprotein A-I. Proceedings of the National Academy of Sciences U S A. 2008;105:12224-9.
-
(2008)
Proceedings of the National Academy of Sciences U S A
, vol.105
, pp. 12224-12229
-
-
Shao, B.1
Cavigiolio, G.2
Brot, N.3
Oda, M.N.4
Heinecke, J.W.5
-
26
-
-
65449120650
-
The role of methionine oxidation/reduction in the regulation of immune response
-
Agbas A, Moskovitz J. The role of methionine oxidation/reduction in the regulation of immune response. Current Signal Transduction Therapy. 2009;4:46-50.
-
(2009)
Current Signal Transduction Therapy
, vol.4
, pp. 46-50
-
-
Agbas, A.1
Moskovitz, J.2
-
27
-
-
12844267505
-
Conserved methionines in chloroplasts
-
Sundby C, Härndahl U, Gustavsson N, Åhrman E, Murphy DJ. Conserved methionines in chloroplasts. Biochimica et Biophysica Acta. 2005;1703: 191-202.
-
(2005)
Biochimica et Biophysica Acta
, vol.1703
, pp. 191-202
-
-
Sundby, C.1
Härndahl, U.2
Gustavsson, N.3
Åhrman, E.4
Murphy, D.J.5
-
28
-
-
0042226507
-
Oxidation of the methionine residues of Escherichia coli ribosomal protein L12 decreases the protein's biological activity
-
Caldwell P, Luk DC, Weissbach H, Brot N. Oxidation of the methionine residues of Escherichia coli ribosomal protein L12 decreases the protein's biological activity. Proceedings of the National Academy of Sciences U S A 1978;75:5349-52.
-
(1978)
Proceedings of the National Academy of Sciences U S A
, vol.75
, pp. 5349-5352
-
-
Caldwell, P.1
Luk, D.C.2
Weissbach, H.3
Brot, N.4
-
29
-
-
0034938628
-
Comparing the effect on protein stability of methionine oxidation versus mutagenesis: steps toward engineering oxidative resistance in proteins
-
Kim YH, Berry AH, Spencer DS, Stites WE. Comparing the effect on protein stability of methionine oxidation versus mutagenesis: steps toward engineering oxidative resistance in proteins. Protein Engineering. 2001;14:343-7.
-
(2001)
Protein Engineering
, vol.14
, pp. 343-347
-
-
Kim, Y.H.1
Berry, A.H.2
Spencer, D.S.3
Stites, W.E.4
-
32
-
-
12844253127
-
Structural and functional consequences of methionine oxidation in thrombomodulin
-
Wood MJ, Prieto JH, Komives EA. Structural and functional consequences of methionine oxidation in thrombomodulin. Biochimica et Biophysica Acta. 2005;1703:141-7.
-
(2005)
Biochimica et Biophysica Acta
, vol.1703
, pp. 141-147
-
-
Wood, M.J.1
Prieto, J.H.2
Komives, E.A.3
-
33
-
-
0025376434
-
Structural and functional changes associated with modification of the ubiquitin methionine
-
Bamezai S, Banez MA, Breslow E. Structural and functional changes associated with modification of the ubiquitin methionine. Biochemistry. 1990;29:5389-96.
-
(1990)
Biochemistry
, vol.29
, pp. 5389-5396
-
-
Bamezai, S.1
Banez, M.A.2
Breslow, E.3
-
34
-
-
42949085382
-
A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation
-
Erickson JR, Joiner M-lA, Guan X, et al. A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell. 2008;133:462-74.
-
(2008)
Cell
, vol.133
, pp. 462-474
-
-
Erickson, J.R.1
Joiner, M-L.2
Guan, X.3
-
35
-
-
0026538733
-
Activation of the fifth component of human complement by oxygen-derived free radicals, and by methionine oxidizing agents: a comparison
-
Vogt W, Hesse D. Activation of the fifth component of human complement by oxygen-derived free radicals, and by methionine oxidizing agents: a comparison. Immunobiology. 1992;184:384-91.
-
(1992)
Immunobiology
, vol.184
, pp. 384-391
-
-
Vogt, W.1
Hesse, D.2
-
36
-
-
77952746177
-
Oxidation of an adjacent methionine residue inhibits regulatory serylphosphorylation of pyruvate dehydrogenase
-
Miernyk JA, Johnston ML, Huber SC, Tovar-Méndez A, Hoyos E, Randall DD. Oxidation of an adjacent methionine residue inhibits regulatory serylphosphorylation of pyruvate dehydrogenase. Proteomics Insights. 2009;2: 15-22.
-
(2009)
Proteomics Insights
, vol.2
, pp. 15-22
-
-
Miernyk, J.A.1
Johnston, M.L.2
Huber, S.C.3
Tovar-Méndez, A.4
Hoyos, E.5
Randall, D.D.6
-
38
-
-
0031470652
-
The structural basis for 14-3-3: phosphopeptide binding specificity
-
Yaffe MB, Rittinger K, Volinia S, et al. The structural basis for 14-3-3:phosphopeptide binding specificity. Cell. 1997;91:961-71.
-
(1997)
Cell
, vol.91
, pp. 961-971
-
-
Yaffe, M.B.1
Rittinger, K.2
Volinia, S.3
-
39
-
-
0036006188
-
A peptide methionine sulfoxide reductase highly expressed in photosynthetic tissue in Arabidopsis thaliana can protect the chaperone-like activity of a chloroplast-localized small heat shock protein
-
Gustavsson N, Kokke BPA, Härndahl U, et al. A peptide methionine sulfoxide reductase highly expressed in photosynthetic tissue in Arabidopsis thaliana can protect the chaperone-like activity of a chloroplast-localized small heat shock protein. Plant Journal. 2002;29:545-53.
-
(2002)
Plant Journal
, vol.29
, pp. 545-553
-
-
Gustavsson, N.1
Kokke, B.P.A.2
Härndahl, U.3
-
40
-
-
1842712573
-
Arabidopsis peptide methionine sulfoxide reductase2 prevents cellular oxidative damage in long nights
-
Bechtold U, Murphy DJ, Mullineaux PM. Arabidopsis peptide methionine sulfoxide reductase2 prevents cellular oxidative damage in long nights. Plant Cell. 2004;16:908-19.
-
(2004)
Plant Cell
, vol.16
, pp. 908-919
-
-
Bechtold, U.1
Murphy, D.J.2
Mullineaux, P.M.3
-
41
-
-
16544383249
-
Investigations into the role of the plastidial peptide methionine sulfoxide reductase in response to oxidative stress in Arabidopsis
-
Romero HM, Berlett BS, Jensen PJ, Pell EJ, Tien M. Investigations into the role of the plastidial peptide methionine sulfoxide reductase in response to oxidative stress in Arabidopsis. Plant Physiology. 2004;136:3784-94.
-
(2004)
Plant Physiology
, vol.136
, pp. 3784-3794
-
-
Romero, H.M.1
Berlett, B.S.2
Jensen, P.J.3
Pell, E.J.4
Tien, M.5
-
42
-
-
26944456370
-
The Arabidopsis plastidic methionine sulfoxide reductase B proteins
-
Vieira Dos Santos C, Cuiné S, Rouhier N, Rey P. The Arabidopsis plastidic methionine sulfoxide reductase B proteins. Sequence and activity characteristics, comparison of the expression with plastidic methionine sulfoxide reductase A, and induction by photooxidative stress. Plant Physiology. 2005;138:909-22.
-
(2005)
Plant Physiology
, vol.138
, pp. 909-922
-
-
Vieira Dos Santos, C.1
Cuiné, S.2
Rouhier, N.3
Rey, P.4
-
44
-
-
0026795635
-
Protein oxidation and aging
-
Stadtman ER. Protein oxidation and aging. Science. 1992;257:1220-4.
-
(1992)
Science
, vol.257
, pp. 1220-1224
-
-
Stadtman, E.R.1
-
46
-
-
0032564345
-
Overexpression of peptide-methionine sulfoxide reductase in Saccharomyces cerevisiae and human T cells provides them with high resistance to oxidative stress
-
Moskovitz J, Flescher E, Berlett BS, Azare J, Poston JM, Stadtman ER. Overexpression of peptide-methionine sulfoxide reductase in Saccharomyces cerevisiae and human T cells provides them with high resistance to oxidative stress. Proceedings of the National Academy of Sciences U S A. 1998;95:14071-5.
-
(1998)
Proceedings of the National Academy of Sciences U S A
, vol.95
, pp. 14071-14075
-
-
Moskovitz, J.1
Flescher, E.2
Berlett, B.S.3
Azare, J.4
Poston, J.M.5
Stadtman, E.R.6
-
47
-
-
3042834124
-
Methionine sulfoxide reductase A is important for lens cell viability and resistance to oxidative stress
-
Kantorow M, Hawse JR, Cowell TL, et al. Methionine sulfoxide reductase A is important for lens cell viability and resistance to oxidative stress. Proceedings of the National Academy of Sciences U S A. 2004;101:9654-9.
-
(2004)
Proceedings of the National Academy of Sciences U S A
, vol.101
, pp. 9654-9659
-
-
Kantorow, M.1
Hawse, J.R.2
Cowell, T.L.3
-
48
-
-
27544483741
-
Overexpression of MsrA protects WI-38 SV40 human fibroblasts against H2O2-mediated oxidative stress
-
Picot CR, Petropoulos I, Perichon M, Moreau M, Nizard C, Friguet B. Overexpression of MsrA protects WI-38 SV40 human fibroblasts against H2O2-mediated oxidative stress. Free Radical Biology and Medicine. 2005;39:1332-41.
-
(2005)
Free Radical Biology and Medicine
, vol.39
, pp. 1332-1341
-
-
Picot, C.R.1
Petropoulos, I.2
Perichon, M.3
Moreau, M.4
Nizard, C.5
Friguet, B.6
|