메뉴 건너뛰기




Volumn 21, Issue 3, 2011, Pages 295-308

Density-based Silhouette diagnostics for clustering methods

Author keywords

Cluster analysis; Density estimation; Diagnostics; Silhouette information

Indexed keywords


EID: 79958209396     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11222-010-9169-0     Document Type: Article
Times cited : (35)

References (30)
  • 2
    • 34247211255 scopus 로고    scopus 로고
    • Clustering via nonparametric density estimation
    • Azzalini, A., Torelli, N.: Clustering via nonparametric density estimation. Stat. Comput. 17, 71-80 (2007).
    • (2007) Stat. Comput , vol.17 , pp. 71-80
    • Azzalini, A.1    Torelli, N.2
  • 3
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield, J. D., Raftery, A. E.: Model-based Gaussian and non-Gaussian clustering. Biometrics 49, 803-821 (1993).
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 5
    • 0029360028 scopus 로고
    • On cluster validity for the fuzzy c-means model
    • Bezdek, J. C., Pal, N. R.: On cluster validity for the fuzzy c-means model. IEEE Trans. Fuzzy Syst. 3, 190-193 (1995).
    • (1995) IEEE Trans. Fuzzy Syst , vol.3 , pp. 190-193
    • Bezdek, J.C.1    Pal, N.R.2
  • 6
    • 85042555546 scopus 로고
    • Bayesian cluster analysis
    • Binder, D. A.: Bayesian cluster analysis. Biometrika 65, 31-38 (1978).
    • (1978) Biometrika , vol.65 , pp. 31-38
    • Binder, D.A.1
  • 7
    • 0002396668 scopus 로고
    • Approximations to bayesian clustering rules
    • Binder, D. A.: Approximations to bayesian clustering rules. Biometrika 68, 275-285 (1981).
    • (1981) Biometrika , vol.68 , pp. 275-285
    • Binder, D.A.1
  • 8
    • 0020998698 scopus 로고
    • On using principal components before separating a mixture of two multivariate normal distributions
    • Chang, W. C.: On using principal components before separating a mixture of two multivariate normal distributions. Appl. Stat. 32, 267-275 (1983).
    • (1983) Appl. Stat , vol.32 , pp. 267-275
    • Chang, W.C.1
  • 9
    • 0035963461 scopus 로고    scopus 로고
    • Cluster analysis: a further approach based on density estimation
    • Cuevas, A., Febrero, M., Fraiman, R.: Cluster analysis: a further approach based on density estimation. Comput. Stat. Data Anal. 36, 441-459 (2001).
    • (2001) Comput. Stat. Data Anal , vol.36 , pp. 441-459
    • Cuevas, A.1    Febrero, M.2    Fraiman, R.3
  • 13
    • 0003132593 scopus 로고
    • Well separated clusters and optimal fuzzy partitions
    • Dunn, J.: Well separated clusters and optimal fuzzy partitions. J. Cybern. 57, 3-32 (1974).
    • (1974) J. Cybern , vol.57 , pp. 3-32
    • Dunn, J.1
  • 14
    • 26444454606 scopus 로고    scopus 로고
    • Feature selection for unsupervised learning
    • Dy, J. G., Brodley, C.: Feature selection for unsupervised learning. J. Mach. Learn. Res. 5, 845-889 (2004).
    • (2004) J. Mach. Learn. Res , vol.5 , pp. 845-889
    • Dy, J.G.1    Brodley, C.2
  • 16
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett, T.: An introduction to ROC analysis. Pattern Recognit. Lett. 27, 861-874 (2006).
    • (2006) Pattern Recognit. Lett , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 17
    • 0012996824 scopus 로고
    • Classification of olive oils from their fatty acid composition
    • M. Martens and H. J. Russwurm (Eds.), London: Appl. Sci
    • Forina, M., Armanino, C., Lanteri, S., Tiscornia, E.: Classification of olive oils from their fatty acid composition. In: Martens, M., Russwurm, H. J. (eds.) Food Research and Data Analysis, pp. 189-214. Appl. Sci., London (1983).
    • (1983) Food Research and Data Analysis , pp. 189-214
    • Forina, M.1    Armanino, C.2    Lanteri, S.3    Tiscornia, E.4
  • 18
    • 0001757440 scopus 로고
    • Multivariate data analysis as a discriminating method of the origin of wines
    • Forina, M., Armanino, C., Castino, M., Ubigli, M.: Multivariate data analysis as a discriminating method of the origin of wines. Vitis 25, 189-201 (1986).
    • (1986) Vitis , vol.25 , pp. 189-201
    • Forina, M.1    Armanino, C.2    Castino, M.3    Ubigli, M.4
  • 19
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis and density estimation
    • Fraley, C., Raftery, A. E.: Model-based clustering, discriminant analysis and density estimation. J. Am. Stat. Assoc. 97, 611-631 (2002).
    • (2002) J. Am. Stat. Assoc , vol.97 , pp. 611-631
    • Fraley, C.1    Raftery, A.E.2
  • 20
    • 34547913193 scopus 로고    scopus 로고
    • MCLUST version 3 for R: Normal mixture modeling and model-based clustering
    • 504, Univ. of Washington, Dep. of Stat
    • Fraley, C., Raftery, A. E.: MCLUST version 3 for R: Normal mixture modeling and model-based clustering. Tech. Rep. 504, Univ. of Washington, Dep. of Stat. (2006).
    • (2006) Tech. Rep
    • Fraley, C.1    Raftery, A.E.2
  • 21
    • 25144456056 scopus 로고    scopus 로고
    • Computational cluster validation in post-genomic data analysis
    • Handl, J., Knowles, J., Kell, D. B.: Computational cluster validation in post-genomic data analysis. Bioinformatics 21(15), 3201-3212 (2005).
    • (2005) Bioinformatics , vol.21 , Issue.15 , pp. 3201-3212
    • Handl, J.1    Knowles, J.2    Kell, D.B.3
  • 23
    • 85004899658 scopus 로고
    • Quadratic assignment as a general data analysis strategy
    • Hubert, L. J., Schultz, J. W.: Quadratic assignment as a general data analysis strategy. Br. J. Math. Stat. Psychol 29, 190-241 (1976).
    • (1976) Br. J. Math. Stat. Psychol , vol.29 , pp. 190-241
    • Hubert, L.J.1    Schultz, J.W.2
  • 25
    • 0036937614 scopus 로고    scopus 로고
    • Performance evaluation of some clustering algorithms and validity indices
    • Maulik, U., Bandyopadhyay, S.: Performance evaluation of some clustering algorithms and validity indices. IEEE Trans. Pattern Anal. Mach. Intell. 24, 1650-1654 (2002).
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell , vol.24 , pp. 1650-1654
    • Maulik, U.1    Bandyopadhyay, S.2
  • 27
    • 0023453329 scopus 로고
    • Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
    • Rousseeuw, P. J.: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53-65 (1987).
    • (1987) J. Comput. Appl. Math , vol.20 , pp. 53-65
    • Rousseeuw, P.J.1
  • 28
    • 22044455069 scopus 로고    scopus 로고
    • Density-based clustering in spatial databases: the algorithm GDBSCAN and its applications
    • Sander, J., Ester, M., Kriegel, H. P., Xu, X.: Density-based clustering in spatial databases: the algorithm GDBSCAN and its applications. Data Min. Knowl. Discov. 2, 169-194 (1998).
    • (1998) Data Min. Knowl. Discov , vol.2 , pp. 169-194
    • Sander, J.1    Ester, M.2    Kriegel, H.P.3    Xu, X.4
  • 29
    • 0037560966 scopus 로고    scopus 로고
    • Estimating the cluster tree of a density by analyzing the minimal spanning tree of a sample
    • Stuetzle, W.: Estimating the cluster tree of a density by analyzing the minimal spanning tree of a sample. J. Classif. 20, 25-47 (2003).
    • (2003) J. Classif , vol.20 , pp. 25-47
    • Stuetzle, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.