메뉴 건너뛰기




Volumn 25, Issue 2, 2011, Pages 187-192

Forecasting nitrate concentration in groundwater using artificial neural network and linear regression models

Author keywords

Artificial neural network; Nitrate concentration; Prediction; Regression

Indexed keywords

ARTIFICIAL NEURAL NETWORK; CONCENTRATION (COMPOSITION); GROUNDWATER; NITRATE; PREDICTION; REGRESSION ANALYSIS; WATER QUALITY;

EID: 79958189848     PISSN: 02368722     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (30)

References (23)
  • 1
    • 15944366613 scopus 로고    scopus 로고
    • Modular neural networks to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data
    • Almasri M.N. and Kaluarachchi J.J., 2005. Modular neural networks to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data. Environ. Model. Software, 20, 851-871.
    • (2005) Environ. Model. Software , vol.20 , pp. 851-871
    • Almasri, M.N.1    Kaluarachchi, J.J.2
  • 2
    • 76149105189 scopus 로고    scopus 로고
    • Comparison between mathematical models and artificial neural networks for prediction of sorption isotherm in rough rice
    • Amiri-Chayjan R. and Esna-Ashari M., 2010. Comparison between mathematical models and artificial neural networks for prediction of sorption isotherm in rough rice. Int. Agrophysics, 24, 1-7.
    • (2010) Int. Agrophysics , vol.24 , pp. 1-7
    • Amiri-Chayjan, R.1    Esna-Ashari, M.2
  • 4
    • 33746329318 scopus 로고    scopus 로고
    • Areview on integration of artificial intelligence into water quality modeling
    • Chau K.W., 2006.Areview on integration of artificial intelligence into water quality modeling. Marine Poll. Bull., 52, 726-733.
    • (2006) Marine Poll. Bull , vol.52 , pp. 726-733
    • Chau, K.W.1
  • 5
    • 0036179359 scopus 로고    scopus 로고
    • A neural network model to predict the wastewater inflow incorporating rainfall events
    • El-Din A.G. and Smith D.W., 2002. A neural network model to predict the wastewater inflow incorporating rainfall events. Water Res., 36(5), 1115-1126.
    • (2002) Water Res , vol.36 , Issue.5 , pp. 1115-1126
    • El-Din, A.G.1    Smith, D.W.2
  • 6
    • 77950516820 scopus 로고    scopus 로고
    • A hybrid neural network and ARIMA model for water quality time series prediction
    • Faruk D., 2010. A hybrid neural network and ARIMA model for water quality time series prediction. Eng. Appl. Artificial Intell., 23(4), 586-594.
    • (2010) Eng. Appl. Artificial Intell , vol.23 , Issue.4 , pp. 586-594
    • Faruk, D.1
  • 7
    • 79952302763 scopus 로고    scopus 로고
    • Effect of biowaste compost and nitrogen fertilization on water properties of Mollic-gleyic Fluvisol
    • Gła{ogonek}b T., Zaleski T., Erhart E., and Hartl W., 2009. Effect of biowaste compost and nitrogen fertilization on water properties of Mollic-gleyic Fluvisol. Int. Agrophysics, 23, 123-128.
    • (2009) Int. Agrophysics , vol.23 , pp. 123-128
    • Gab, T.1    Zaleski, T.2    Erhart, E.3    Hartl, W.4
  • 8
    • 36148938321 scopus 로고    scopus 로고
    • Applications of artificial neural networks predicting macroinvertebrates in freshwaters
    • Goethals P., Dedecker A.P., Gabriels W., Lek S., and Pauw N., 2007. Applications of artificial neural networks predicting macroinvertebrates in freshwaters. Ecol., 41, 491-508.
    • (2007) Ecol , vol.41 , pp. 491-508
    • Goethals, P.1    Dedecker, A.P.2    Gabriels, W.3    Lek, S.4    Pauw, N.5
  • 9
    • 49849104093 scopus 로고    scopus 로고
    • Simultaneous prediction of multiple chemical parameters of riverwater qualitywith tide
    • IEEE Computer Society,May11-13, Varna, Bulgaria
    • Hatzikos E., Anastasakis L., Bassiliades N., and Vlahavas I., 2005. Simultaneous prediction of multiple chemical parameters of riverwater qualitywith tide. Proc. 2nd Int. Sci.Conf. Computer Sci., IEEE Computer Society,May11-13, Varna, Bulgaria.
    • (2005) Proc. 2nd Int. Sci.Conf. Computer Sci
    • Hatzikos, E.1    Anastasakis, L.2    Bassiliades, N.3    Vlahavas, I.4
  • 10
    • 77954143346 scopus 로고    scopus 로고
    • Groundwater geochemistry in the Alisadr, Hamadan, western Ira
    • Jalali M., 2009. Groundwater geochemistry in the Alisadr, Hamadan, western Iran. Environ. Monit. Assess., 166, 359-369.
    • (2009) Environ. Monit. Assess , vol.166 , pp. 359-369
    • Jalali, M.1
  • 11
    • 0031788306 scopus 로고    scopus 로고
    • Modeling nitrate leaching using neural networks
    • Kaluli J.W., Madramootoo C.A., and Djebbar Y., 1998. Modeling nitrate leaching using neural networks. Water Sci. Technol., 38(7), 127-134.
    • (1998) Water Sci. Technol , vol.38 , Issue.7 , pp. 127-134
    • Kaluli, J.W.1    Madramootoo, C.A.2    Djebbar, Y.3
  • 12
    • 0032842742 scopus 로고    scopus 로고
    • Prediction of stream nitrogen concentration from watershed features using neural networks
    • Lek S., Maritxu G., and Giraudel J., 1999. Prediction of stream nitrogen concentration from watershed features using neural networks. Wat. Res., 33(16), 3469-78.
    • (1999) Wat. Res , vol.33 , Issue.16 , pp. 3469-3478
    • Lek, S.1    Maritxu, G.2    Giraudel, J.3
  • 13
    • 79958228173 scopus 로고    scopus 로고
    • Neural networks in optimal calibration of water distribution systems, artificial neural networks for civil engineering: Advanced features and applications
    • (Eds I. Flood, R. Kartam). ASCE Press, New York, USA
    • Lingireddy S. and Ormsbee L.E., 1998. Neural Networks in Optimal Calibration of Water Distribution Systems, Artificial Neural Networks for Civil Engineering: Advanced Features and Applications (Eds I. Flood, R. Kartam). ASCE Press, New York, USA.
    • (1998)
    • Lingireddy, S.1    Ormsbee, L.E.2
  • 14
    • 0003797509 scopus 로고
    • Nutrients in groundwater and surface water of the united states: An analysis of data through 1992
    • U.S. Geol. Survey Water Resour. Inv., Report, 95-4031, Dovenport, IO, USA
    • Mueller D.K, Hamilton P.A., Helsel D.R., Hitt K.J., and Ruddy B.C., 1995. Nutrients in groundwater and surface water of the United States: an analysis of data through 1992. U.S. Geol. Survey Water Resour. Inv., Report, 95-4031, Dovenport, IO, USA.
    • (1995)
    • Mueller, D.K.1    Hamilton, P.A.2    Helsel, D.R.3    Hitt, K.J.4    Ruddy, B.C.5
  • 15
    • 49849106661 scopus 로고    scopus 로고
    • An ANNapplication for water quality forecasting
    • Palani S., Liong S.Y., and Tkalich P., 2008. AnANNapplication for water quality forecasting. Marine Poll. Bull., 56, 1586-1597.
    • (2008) Marine Poll. Bull , vol.56 , pp. 1586-1597
    • Palani, S.1    Liong, S.Y.2    Tkalich, P.3
  • 16
    • 0000552519 scopus 로고    scopus 로고
    • Nitrates, agriculture and environment
    • Prakasa Rao E.V.S. and Puttanna K., 2000. Nitrates, agriculture and environment. Current Sci., 79(9), 1163-1168.
    • (2000) Current Sci , vol.79 , Issue.9 , pp. 1163-1168
    • Prakasa, R.E.V.S.1    Puttanna, K.2
  • 17
    • 79958182659 scopus 로고    scopus 로고
    • Modeling nitrate concentration in ground water using regression and neural networks
    • ORES SP03-01, Food and Resource Economic, Delaware Univ. Papers, Newark, DE, USA
    • Ramasamy N., Krishnan P., Bernard J.B., and Ritter W.F., 2003. Modeling Nitrate Concentration in Ground Water Using Regression and Neural Networks. ORES SP03-01, Food and Resource Economic, Delaware Univ. Papers, Newark, DE, USA.
    • (2003)
    • Ramasamy, N.1    Krishnan, P.2    Bernard, J.B.3    Ritter, W.F.4
  • 18
    • 0034174354 scopus 로고    scopus 로고
    • Neural networks for agrichemical vulnerability assessment of rural private wells
    • Ray C., And Klindworth K.K., 2000.Neural networks for agrichemical vulnerability assessment of rural private wells. J. Hydrol. Eng., 4, 162-171.
    • (2000) J. Hydrol. Eng , vol.4 , pp. 162-171
    • Ray, C.1    And Klindworth, K.K.2
  • 19
    • 48749093170 scopus 로고    scopus 로고
    • Neural network approach for estimating reference evapotranspiration from limited climatic data in Burkina Faso
    • Wang Y.M., Traore S., and Kerh T., 2008. Neural network approach for estimating reference evapotranspiration from limited climatic data in Burkina Faso. Transactions on Computers, 6(7), 704-712.
    • (2008) Transactions on Computers , vol.6 , Issue.7 , pp. 704-712
    • Wang, Y.M.1    Traore, S.2    Kerh, T.3
  • 20
    • 0031908080 scopus 로고    scopus 로고
    • A neural network approach to multi-objective optimization for water quality management in a river basin
    • Wen C.G. and Lee C.S., 1998. A neural network approach to multi-objective optimization for water quality management in a river basin, Water Resour. Res., 34(3), 427-436.
    • (1998) Water Resour. Res , vol.34 , Issue.3 , pp. 427-436
    • Wen, C.G.1    Lee, C.S.2
  • 21
    • 54049149835 scopus 로고    scopus 로고
    • Neural network prediction of nitrate in groundwater of Harran Plain, Turkey
    • Yesilnacar M.I., Sahinkaya E., Naz M., and Ozkaya B., 2008. Neural network prediction of nitrate in groundwater of Harran Plain, Turkey. Environ Geol., 56, 19-25.
    • (2008) Environ Geol , vol.56 , pp. 19-25
    • Yesilnacar, M.I.1    Sahinkaya, E.2    Naz, M.3    Ozkaya, B.4
  • 22
    • 4544271968 scopus 로고    scopus 로고
    • Inverse modeling to identify nonpoint source pollution using a neural network, Taihu lake watershed, China
    • Zaheer I. and Cui G., 2003. Inverse modeling to identify nonpoint source pollution using a neural network, Taihu lake watershed, China. J. Environ. Hydrol., 11, 1-8.
    • (2003) J. Environ. Hydrol , vol.11 , pp. 1-8
    • Zaheer, I.1    Cui, G.2
  • 23
    • 0031239528 scopus 로고    scopus 로고
    • Forecasting raw water quality parameters for North Saskatchewan River by neural network modeling
    • Zhang Q. and Stephen J.S., 1997. Forecasting raw water quality parameters for North Saskatchewan River by neural network modeling. Water Res., 31(9), 2340-2351.
    • (1997) Water Res , vol.31 , Issue.9 , pp. 2340-2351
    • Zhang, Q.1    Stephen, J.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.