메뉴 건너뛰기




Volumn 217, Issue 23, 2011, Pages 9659-9668

Feature extraction using two-dimensional local graph embedding based on maximum margin criterion

Author keywords

Feature extraction; Maximum margin criterion (MMC); Two dimensional Fisherfaces (2DLDA); Two dimensional Laplacianfaces (2DLPP); Two dimensional Local Graph Embedding Discriminant Analysis (2DLGEDA)

Indexed keywords

2D IMAGE MATRICES; COMPUTATIONAL TIME; DISCRIMINANT CRITERIA; EIGENFACES; EXPERIMENTAL CONDITIONS; FEATURE MATRIX; FISHER-FACES; GRAPH EMBEDDINGS; HIGH-DIMENSIONAL IMAGES; IMAGE FEATURE EXTRACTIONS; IMAGE MATRIX; INVERSE MATRIX; MAXIMUM MARGIN CRITERIONS; NOVEL METHODS; TWO-DIMENSIONAL LAPLACIANFACES (2DLPP);

EID: 79958164903     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2011.04.050     Document Type: Article
Times cited : (21)

References (43)
  • 3
    • 33144458972 scopus 로고    scopus 로고
    • Efficient and robust feature extraction by maximum margin criterion
    • H. Li, T. Jiang, and K. Zhang Efficient and robust feature extraction by maximum margin criterion IEEE Trans. Neural Netw. 17 1 2006 1157 1165
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.1 , pp. 1157-1165
    • Li, H.1    Jiang, T.2    Zhang, K.3
  • 4
    • 27744565938 scopus 로고    scopus 로고
    • Solving the small sample size problem in face recognition using generalized discriminant analysis
    • DOI 10.1016/j.patcog.2005.06.013, PII S0031320305002670, Complexity Reduction
    • P. Howland, J. Wang, and H. Park Solving the small sample size problem in face recognition using generalized discriminant analysis Pattern Recognit. 39 2006 277 287 (Pubitemid 41586095)
    • (2006) Pattern Recognition , vol.39 , Issue.2 , pp. 277-287
    • Howland, P.1    Wang, J.2    Park, H.3
  • 5
    • 13844299267 scopus 로고    scopus 로고
    • Foley-Sammon optimal discriminant vectors using kernel approach
    • DOI 10.1109/TNN.2004.836239
    • W. Zheng, L. Zhao, and C. Zou Foley-Sammon optimal discriminant vectors using kernel approach IEEE Trans. Neural Netw. 16 1 2005 1 9 (Pubitemid 40241906)
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.1 , pp. 1-9
    • Zheng, W.1    Zhao, L.2    Zou, C.3
  • 6
    • 1842812871 scopus 로고    scopus 로고
    • An efficient algorithm to solve the small sample size problem for LDA
    • DOI 10.1016/j.patcog.2003.02.001, PII S0031320303003261
    • W. Zheng, L. Zhao, and C. Zou An efficient algorithm to solve the small sample size problem for LDA Pattern Recognit. 37 2004 1077 1079 (Pubitemid 38473845)
    • (2004) Pattern Recognition , vol.37 , Issue.5 , pp. 1077-1079
    • Zheng, W.1    Zhao, L.2    Zou, C.3
  • 7
    • 84887916087 scopus 로고
    • Regularized discriminant analysis
    • J.H. Friedman Regularized discriminant analysis J. Am. Statist. Assoc. 84 405 1989 165 175
    • (1989) J. Am. Statist. Assoc. , vol.84 , Issue.405 , pp. 165-175
    • Friedman, J.H.1
  • 8
    • 0004236492 scopus 로고    scopus 로고
    • third ed. The Johns Hopkins University Press Baltimore, MD
    • G.H. Golub, and C.F. Van Loan Matrix Computations third ed. 1996 The Johns Hopkins University Press Baltimore, MD
    • (1996) Matrix Computations
    • Golub, G.H.1    Van Loan, C.F.2
  • 11
    • 1342310014 scopus 로고    scopus 로고
    • Structure preserving dimension reduction for clustered text data based on the generalized singular value decomposition
    • DOI 10.1137/S0895479801393666, PII S0895479801393666
    • P. Howland, M. Jeon, and H. Park Structure preserving dimension reduction for clustered text data based on the generalized singular value decomposition SIAM J. Matrix Anal. Appl. 25 1 2003 165 179 (Pubitemid 38260434)
    • (2004) SIAM Journal on Matrix Analysis and Applications , vol.25 , Issue.1 , pp. 165-179
    • Howland, P.1    Jeon, M.2    Park, H.3
  • 12
    • 3242767684 scopus 로고    scopus 로고
    • An optimization criterion for generalized discriminant analysis on undersampled problems
    • J. Ye, R. Janardan, C.H. Park, and H. Park An optimization criterion for generalized discriminant analysis on undersampled problems IEEE Trans. Pattern Anal. Mach. Intel. 26 8 2004 982 994
    • (2004) IEEE Trans. Pattern Anal. Mach. Intel. , vol.26 , Issue.8 , pp. 982-994
    • Ye, J.1    Janardan, R.2    Park, C.H.3    Park, H.4
  • 13
  • 14
    • 0034300875 scopus 로고    scopus 로고
    • A new LDA-based face recognition system which can solve the small sample size problem
    • L.-F. Chen, X. Hong-Yuan, M. Liao, M.-T. Ko, J.-C. Lin, and G.-J. Yu A new LDA-based face recognition system which can solve the small sample size problem Pattern Recognit. 33 2000 1713 1726
    • (2000) Pattern Recognit. , vol.33 , pp. 1713-1726
    • Chen, L.-F.1    Hong-Yuan, X.2    Liao, M.3    Ko, M.-T.4    Lin, J.-C.5    Yu, G.-J.6
  • 15
    • 0742268833 scopus 로고    scopus 로고
    • Two-dimensional PCA: A new approach to appearance-based face representation and recognition
    • J. Yang, D. Zhang, A.F. Frangi, and J. Yang Two-dimensional PCA: a new approach to appearance-based face representation and recognition IEEE Trans. Pattern Anal. Mach. Intel. 26 1 2004 131 137
    • (2004) IEEE Trans. Pattern Anal. Mach. Intel. , vol.26 , Issue.1 , pp. 131-137
    • Yang, J.1    Zhang, D.2    Frangi, A.F.3    Yang, J.4
  • 16
    • 0036721691 scopus 로고    scopus 로고
    • From image vector to matrix: A straightforward image projection technique-IMPCA vs. PCA
    • DOI 10.1016/S0031-3203(02)00040-7, PII S0031320302000407
    • J. Yang, and J.Y. Yang From image vector to matrix: a straightforward image projection technique - IMPCA vs. PCA Pattern Recognit. 35 9 2002 1997 1999 (Pubitemid 34776312)
    • (2002) Pattern Recognition , vol.35 , Issue.9 , pp. 1997-1999
    • Yang, J.1    Yang, J.-Y.2
  • 17
    • 14644408830 scopus 로고    scopus 로고
    • 2D-LDA: A statistical linear discriminant analysis for image matrix
    • DOI 10.1016/j.patrec.2004.09.007, PII S0167865504002272
    • M. Li, and B. Yuan 2D-LDA: a statistical linear discriminant analysis for image matrix Pattern Recognit. Lett. 26 2005 527 532 (Pubitemid 40319616)
    • (2005) Pattern Recognition Letters , vol.26 , Issue.5 , pp. 527-532
    • Li, M.1    Yuan, B.2
  • 18
    • 17444363017 scopus 로고    scopus 로고
    • Two-dimensional discriminant transform for face recognition
    • DOI 10.1016/j.patcog.2004.11.019, PII S0031320305000026
    • J. Yang, D. Zhang, Y. Xu, and J.J. Yang Two-dimensional discriminant transform for face recognition Pattern Recognit. 38 2005 1125 1129 (Pubitemid 40537034)
    • (2005) Pattern Recognition , vol.38 , Issue.7 , pp. 1125-1129
    • Yang, J.1    Zhang, D.2    Yong, X.3    Yang, J.-Y.4
  • 19
    • 17444363786 scopus 로고    scopus 로고
    • Two-dimensional FLD for face recognition
    • DOI 10.1016/j.patcog.2004.12.003, PII S0031320305000130
    • H.L. Xiong, M.N.S. Swanmy, and M.O. Ahmad Two-dimensional FLD for face recognition Pattern Recognit. 38 2005 1121 1124 (Pubitemid 40537033)
    • (2005) Pattern Recognition , vol.38 , Issue.7 , pp. 1121-1124
    • Xiong, H.1    Swamy, M.N.S.2    Ahmad, M.O.3
  • 20
    • 32044437958 scopus 로고    scopus 로고
    • Face recognition based on 2D Fisherface approach
    • DOI 10.1016/j.patcog.2005.10.020, PII S0031320305004115, Graph-Based Representations
    • X.Y. Jing, H.S. Wong, and D. Zhang Face recognition based on 2D Fisherface approach Pattern Recognit. 39 2006 707 710 (Pubitemid 43199465)
    • (2006) Pattern Recognition , vol.39 , Issue.4 , pp. 707-710
    • Jing, X.-Y.1    Wong, H.-S.2    Zhang, D.3
  • 21
    • 27844449908 scopus 로고    scopus 로고
    • 2PCA: Two-directional two-dimensional PCA for efficient face representation and recognition
    • 2PCA: two-directional two-dimensional PCA for efficient face representation and recognition Neurocomputing 69 2005 224 231
    • (2005) Neurocomputing , vol.69 , pp. 224-231
    • Zhang, D.Q.1    Zhou, Z.H.2
  • 22
    • 32544443317 scopus 로고    scopus 로고
    • 2 FLD: An efficient approach for appearance based object recognition
    • DOI 10.1016/j.neucom.2005.09.002, PII S0925231205002237
    • P. Nagabhushan, D.S. Guru, and B.H. Shekar (2D)2FLD: an efficient approach for appearance based object recognition Neurocomputing 69 2006 934 940 (Pubitemid 43230407)
    • (2006) Neurocomputing , vol.69 , Issue.SPEC. ISS.7-9 , pp. 934-940
    • Nagabhushan, P.1    Guru, D.S.2    Shekar, B.H.3
  • 23
    • 67349153326 scopus 로고    scopus 로고
    • 2PCALDA: An efficient approach for face recognition
    • 2PCALDA: an efficient approach for face recognition Applied Math. Comput. 213 2009 1 7
    • (2009) Applied Math. Comput. , vol.213 , pp. 1-7
    • Qi, Y.1    Zhang, J.2
  • 24
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear Component Analysis as a Kernel Eigenvalue Problem
    • B. Scholkopf, A. Smola, and K.R. Muller Nonlinear component analysis as a kernel Eigenvalue problem Neural Comput. 10 5 1998 1299 1319 (Pubitemid 128463674)
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.2    Muller, K.-R.3
  • 25
    • 0038633559 scopus 로고    scopus 로고
    • Constructing descriptive and discriminative nonlinear features: Rayleigh coefficients in kernel feature spaces
    • S. Mika, G. Ratsch, J. Weston, B. Scholkopf, A. Smola, and K.-R. Muller Constructing descriptive and discriminative nonlinear features: Rayleigh coefficients in kernel feature spaces IEEE Trans. Pattern Anal. Mach. Intel. 25 5 2003 623 628
    • (2003) IEEE Trans. Pattern Anal. Mach. Intel. , vol.25 , Issue.5 , pp. 623-628
    • Mika, S.1    Ratsch, G.2    Weston, J.3    Scholkopf, B.4    Smola, A.5    Muller, K.-R.6
  • 26
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • DOI 10.1126/science.290.5500.2319
    • J.B. Tenenbaum, V. de Silva, and J.C. Langford A global geometric framework for nonlinear dimensionality reduction Science 290 5500 2000 2319 2323 (Pubitemid 32041577)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 27
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • DOI 10.1126/science.290.5500.2323
    • S.T. Roweis, and L.K. Saul Nonlinear dimensionality reduction by locally linear embedding Science 290 5500 2000 2323 2326 (Pubitemid 32041578)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 28
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: Unsupervised learning of low dimensional manifolds
    • L.K. Saul, and S.T. Roweis Think globally, fit locally: unsupervised learning of low dimensional manifolds J. Mach. Learn. Res. 4 2003 119 155
    • (2003) J. Mach. Learn. Res. , Issue.4 , pp. 119-155
    • Saul, L.K.1    Roweis, S.T.2
  • 29
    • 0043278893 scopus 로고    scopus 로고
    • Laplacian Eigenmaps and spectral techniques for embedding and clustering
    • December 3-6 Vancouver, Canada
    • M. Belkin, P. Niyogi, Laplacian Eigenmaps and spectral techniques for embedding and clustering, In Processing, December 3-6, 2001, Vancouver, Canada.
    • (2001) Processing
    • Belkin, M.1    Niyogi, P.2
  • 30
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • DOI 10.1162/089976603321780317
    • M. Belkin, and P. Niyogi Laplacian Eigenmaps for dimensionality reduction and data representation Neural Comput. 15 6 2003 1373 1396 (Pubitemid 37049796)
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 35
    • 45549087497 scopus 로고    scopus 로고
    • Two-dimensional Laplacianfaces method for face recognition
    • Ben, Yang, Shiu, and Pal Two-dimensional Laplacianfaces method for face recognition Pattern Recognit. 41 10 2008 3237 3243
    • (2008) Pattern Recognit. , vol.41 , Issue.10 , pp. 3237-3243
    • Ben1    Yang2    Shiu3    Pal4
  • 37
    • 33749252404 scopus 로고    scopus 로고
    • Two-dimensional locality preserving projections (2DLPP) with its application to palmprint recognition
    • DOI 10.1016/j.patcog.2006.06.022, PII S0031320306003013
    • D. Hu, G. Feng, and Z. Zhou Two-dimensional locality preserving projections (2DLPP) with its application to palmprint recognition Pattern Recognit. 40 1 2007 339 342 (Pubitemid 44486296)
    • (2007) Pattern Recognition , vol.40 , Issue.1 , pp. 339-342
    • Hu, D.1    Feng, G.2    Zhou, Z.3
  • 38
    • 33846009099 scopus 로고    scopus 로고
    • 2D-LPP: A two-dimensional extension of locality preserving projections
    • DOI 10.1016/j.neucom.2006.10.032, PII S0925231206002980
    • S. Chen, H. Zhao, M. Kong, and B. Luo 2DLPP: a two-dimensional extension of locality preserving projections Neurocomputing 70 4-6 2007 912 921 (Pubitemid 46043990)
    • (2007) Neurocomputing , vol.70 , Issue.4-6 , pp. 912-921
    • Chen, S.1    Zhao, H.2    Kong, M.3    Luo, B.4
  • 39
    • 70350716315 scopus 로고    scopus 로고
    • Two-dimensional local graph embedding discriminant analysis (2DLGEDA) with its application to face and Palm Biometrics
    • M. Wan, Z. Lai, J. Shao, and Z. Jin Two-dimensional local graph embedding discriminant analysis (2DLGEDA) with its application to face and Palm Biometrics Neurocomputing 73 2009 193 203
    • (2009) Neurocomputing , vol.73 , pp. 193-203
    • Wan, M.1    Lai, Z.2    Shao, J.3    Jin, Z.4
  • 40
    • 70350741199 scopus 로고    scopus 로고
    • One improvement to two-dimensional locality preserving projection method for use with face recognition
    • Yong Xu, Ge Feng, and Yingnan Zhao One improvement to two-dimensional locality preserving projection method for use with face recognition Neurocomputing 73 2009 245 249
    • (2009) Neurocomputing , vol.73 , pp. 245-249
    • Xu, Y.1    Feng, G.2    Zhao, Y.3
  • 42
    • 34547997615 scopus 로고    scopus 로고
    • Learning a non-linear embedding by preserving class neighbourhood structure
    • R.R. Salakhutdinov, and G.E. Hinton, Learning a non-linear embedding by preserving class neighbourhood structure. In AI and Statistics, 2007.
    • (2007) AI and Statistics
    • Salakhutdinov, R.R.1    Hinton, G.E.2
  • 43
    • 77957020563 scopus 로고    scopus 로고
    • LPP solution schemes for use with face recognition
    • Y. Xu, A. Zhong, J. Yang, and D. zhang LPP solution schemes for use with face recognition Pattern Recognition 43 12 2010 4165 4176
    • (2010) Pattern Recognition , vol.43 , Issue.12 , pp. 4165-4176
    • Xu, Y.1    Zhong, A.2    Yang, J.3    Zhang, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.