-
1
-
-
45549085001
-
Osteogenesis and angiogenesis: The potential for engineering bone
-
Kanczler JM, Oreffo RO. Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater. 2008;15:100-14. (Pubitemid 351955734)
-
(2008)
European Cells and Materials
, vol.15
, pp. 100-114
-
-
Kanczler, J.M.1
Oreffo, R.O.C.2
-
2
-
-
46349099663
-
The dosage dependance of VEGF stimulation on scaffold neovascularisation
-
Davies N, Dobner S, Bezuidenhout D, Schmidt C, Beck M, Zisch AH, Zilla P. The dosage dependance of VEGF stimulation on scaffold neovascularisation. Biomaterials. 2008;29:3531-8.
-
(2008)
Biomaterials
, vol.29
, pp. 3531-3538
-
-
Davies, N.1
Dobner, S.2
Bezuidenhout, D.3
Schmidt, C.4
Beck, M.5
Zisch, A.H.6
Zilla, P.7
-
4
-
-
49649090010
-
Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: A combined gene therapy-cell transplantation approach
-
Jabbarzadeh E, Starnes T, Khan YM, Jiang T, Wirtel AJ, Deng M, Lv Q, Nair LS, Doty SB, Laurencin CT. Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: a combined gene therapy-cell transplantation approach. Proc Natl Acad Sci USA. 2008;105:11099-104.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 11099-11104
-
-
Jabbarzadeh, E.1
Starnes, T.2
Khan, Y.M.3
Jiang, T.4
Wirtel, A.J.5
Deng, M.6
Lv, Q.7
Nair, L.S.8
Doty, S.B.9
Laurencin, C.T.10
-
5
-
-
0030745259
-
Molecular mechanisms of blood vessel formation
-
DOI 10.1016/S0968-0004(97)01074-8, PII S0968000497010748
-
Bussolino F, Mantovani A, Persico G. Molecular mechanisms of blood vessel formation. Trends Biochem Sci. 1997;22:251-6. (Pubitemid 27310945)
-
(1997)
Trends in Biochemical Sciences
, vol.22
, Issue.7
, pp. 251-256
-
-
Bussolino, F.1
Mantovani, A.2
Persico, G.3
-
6
-
-
33645028105
-
Contribution of VEGF and PEDF to choroidal angiogenesis: A need for balanced expressions
-
Tong JP, Yao YF. Contribution of VEGF and PEDF to choroidal angiogenesis: a need for balanced expressions. Clin Biochem. 2006;39:267-76.
-
(2006)
Clin Biochem
, vol.39
, pp. 267-276
-
-
Tong, J.P.1
Yao, Y.F.2
-
7
-
-
0025002792
-
Vascular endothelial growth factor is expressed in rat corpus luteum
-
Phillips HS, Hains J, Leung DW, Ferrara N. Vascular endothelial growth factor is expressed in rat corpus luteum. Endocrinology. 1990;127:965-7. (Pubitemid 20248145)
-
(1990)
Endocrinology
, vol.127
, Issue.2
, pp. 965-967
-
-
Phillips, H.S.1
Hains, J.2
Leung, D.W.3
Ferrara, N.4
-
8
-
-
0029041337
-
Increased expression of vascular endothelial growth/permeability factor in the rat ovary following an ovulatory gonadotropin stimulus: Potential roles in follicle rupture
-
Koos RD. Increased expression of vascular endothelial growth/permeability factor in the rat ovary following an ovulatory gonadotropin stimulus: potential roles in follicle rupture. Biol Reprod. 1995;52:1426-35.
-
(1995)
Biol Reprod
, vol.52
, pp. 1426-1435
-
-
Koos, R.D.1
-
9
-
-
0032852528
-
Molecular and biological properties of vascular endothelial growth factor
-
DOI 10.1007/s001099900019
-
Ferrara N. Molecular and biological properties of vascular endothelial growth factor. J Mol Med. 1999;77:527-43. (Pubitemid 29426311)
-
(1999)
Journal of Molecular Medicine
, vol.77
, Issue.7
, pp. 527-543
-
-
Ferrara, N.1
-
10
-
-
0023899261
-
Effects of basic fibroblast growth factor on bone formation in vitro
-
Canalis E, Centrella M, McCarthy T. Effects of basic fibroblast growth factor on bone formation in vitro. J Clin Invest. 1988;81:1572-7.
-
(1988)
J Clin Invest
, vol.81
, pp. 1572-1577
-
-
Canalis, E.1
Centrella, M.2
McCarthy, T.3
-
11
-
-
0027506158
-
Basic fibroblast growth factor inhibits type I collagen gene expression in osteoblastic MC3T3-E1 cells
-
Hurley MM, Abreu C, Harrison JR, Lichtler AC, Raisz LG, Kream BE. Basic fibroblast growth factor inhibits type I collagen gene expression in osteoblastic MC3T3-E1 cells. J Biol Chem. 1993;268:5588-93. (Pubitemid 23090881)
-
(1993)
Journal of Biological Chemistry
, vol.268
, Issue.8
, pp. 5588-5593
-
-
Hurley, M.M.1
Abreu, C.2
Harrison, J.R.3
Lichtler, A.C.4
Raisz, L.G.5
Kream, B.E.6
-
12
-
-
0041440927
-
Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: An autocrine mechanism contributing to angiogenesis
-
Seghezzi G, Patel S, Ren CJ. Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol. 1998;141:1659-73.
-
(1998)
J Cell Biol
, vol.141
, pp. 1659-1673
-
-
Seghezzi, G.1
Patel, S.2
Ren, C.J.3
-
13
-
-
0038664296
-
Involvement of SAPK/JNK in basic fibroblast growth factor-induced vascular endothelial growth factor release in osteoblasts
-
Tokuda H, Hirade K, Wang X. Involvement of SAPK/JNK in basic fibroblast growth factor-induced vascular endothelial growth factor release in osteoblasts. J Endocrinol. 2003;177:101-7.
-
(2003)
J Endocrinol
, vol.177
, pp. 101-107
-
-
Tokuda, H.1
Hirade, K.2
Wang, X.3
-
14
-
-
33746237655
-
Outgrowth endothelial cells isolated and expanded from human peripheral blood progenitor cells as a potential source of autologous cells for endothelialization of silk fibroin biomaterials
-
DOI 10.1016/j.biomaterials.2006.06.015, PII S0142961206005722
-
Fuchsa S, Mottab A, Migliaresi C. Outgrowth endothelial cells isolated and expanded from human peripheral blood progenitor cells as a potential source of autologous cells for endothelialization of silk fibroin biomaterials. Biomaterials. 2006;27:5399-408. (Pubitemid 44093717)
-
(2006)
Biomaterials
, vol.27
, Issue.31
, pp. 5399-5408
-
-
Fuchs, S.1
Motta, A.2
Migliaresi, C.3
Kirkpatrick, C.J.4
-
15
-
-
0034760458
-
Polymeric system for dual growth factor delivery
-
DOI 10.1038/nbt1101-1029
-
Richardson TO, Peters MC, Ennett AB, Mooney DJ. Polymeric system for dual growth factor delivery. Nat Biotechnol. 2001;19:1029-34. (Pubitemid 33041886)
-
(2001)
Nature Biotechnology
, vol.19
, Issue.11
, pp. 1029-1034
-
-
Richardson, T.P.1
Peters, M.C.2
Ennett, A.B.3
Mooney, D.J.4
-
16
-
-
0041969009
-
Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres
-
Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G, Cohen S. Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mat Res. 2003;65A:485-97.
-
(2003)
J Biomed Mat Res
, vol.65 A
, pp. 485-497
-
-
Perets, A.1
Baruch, Y.2
Weisbuch, F.3
Shoshany, G.4
Neufeld, G.5
Cohen, S.6
-
17
-
-
0036883670
-
Principals of neovascularization for tissue engineering
-
DOI 10.1016/S0098-2997(02)00008-0, PII S0098299702000080
-
Nomi M, Atala A, Coppi PD, Soker S. Principals of neovascularization for tissue engineering. Mol Aspects Med. 2002;23:463-83. (Pubitemid 35254100)
-
(2002)
Molecular Aspects of Medicine
, vol.23
, Issue.6
, pp. 463-483
-
-
Nomi, M.1
Atala, A.2
De Coppi, P.3
Soker, S.4
-
18
-
-
23844480941
-
Plasmid delivery in vivo from porous tissue-engineering scaffolds: Transgene expression and cellular transfection
-
DOI 10.1016/j.ymthe.2005.03.036, PII S1525001605001814
-
Jang JH, Rives CB, Shea LD. Plasmid delivery in vivo from porous tissue-engineering scaffolds: transgene expression and cellular transfection. Mol Ther. 2005;12:475-83. (Pubitemid 41150133)
-
(2005)
Molecular Therapy
, vol.12
, Issue.3
, pp. 475-483
-
-
Jang, J.-H.1
Rives, C.B.2
Shea, L.D.3
-
19
-
-
17644374486
-
Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration
-
DOI 10.1359/JBMR.041226
-
Huang YC, Kaigler D, Rice KG, Krebsbach PH, Mooney DJ. Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration. J Bone Miner Res. 2005;20:848-57. (Pubitemid 40571642)
-
(2005)
Journal of Bone and Mineral Research
, vol.20
, Issue.5
, pp. 848-857
-
-
Huang, Y.-C.1
Kaigler, D.2
Rice, K.G.3
Krebsbach, P.H.4
Mooney, D.J.5
-
20
-
-
0041969009
-
Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres
-
Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G, Cohen S. Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mater Res A. 2003;65:489-97. (Pubitemid 38075880)
-
(2003)
Journal of Biomedical Materials Research - Part A
, vol.65
, Issue.4
, pp. 489-497
-
-
Perets, A.1
Baruch, Y.2
Weisbuch, F.3
Shoshany, G.4
Neufeld, G.5
Cohen, S.6
-
21
-
-
20044361853
-
Strontium ranelate: A novel mode of action optimizing bone formation and resorption
-
Marie PJ. Strontium ranelate: a novel mode of action optimizing bone formation and resorption. Osteoporos Int. 2005;16:S7-10.
-
(2005)
Osteoporos Int
, vol.16
-
-
Marie, P.J.1
-
22
-
-
20144384845
-
Strontium ranelate: A novel mode of action leading to renewed bone quality
-
DOI 10.1007/s00198-004-1809-9
-
Ammann P. Strontium ranelate: a novel mode of action leading to renewed bone quality. Osteoporos Int. 2005;16:S11-5. (Pubitemid 40774827)
-
(2005)
Osteoporosis International
, vol.16
, Issue.SUPPL. 1
-
-
Ammann, P.1
-
23
-
-
4344568941
-
The biological role of strontium
-
Nielsen SP. The biological role of strontium. Bone. 2004;35: 583-8.
-
(2004)
Bone
, vol.35
, pp. 583-588
-
-
Nielsen, S.P.1
-
24
-
-
0030176233
-
The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro
-
DOI 10.1016/8756-3282(96)00080-4
-
Canalis E, et al. The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro. Bone. 1996;18:517-23. (Pubitemid 26257871)
-
(1996)
Bone
, vol.18
, Issue.6
, pp. 517-523
-
-
Canalis, E.1
Hott, M.2
Deloffre, P.3
Tsouderos, Y.4
Marie, P.J.5
-
25
-
-
28444459153
-
Effect of strontium ions on the growth of ROS17/2.8 cells on porous calcium polyphosphate scaffolds
-
DOI 10.1016/j.biomaterials.2005.08.006, PII S0142961205007891
-
Qiu K, Zhao XJ, Wan CX. Effect of strontium ions on the growth of ROS17/2.8 cells on porous calcium polyphosphate scaffolds. Biomaterials. 2006;27:1277-86. (Pubitemid 41739552)
-
(2006)
Biomaterials
, vol.27
, Issue.8
, pp. 1277-1286
-
-
Qiu, K.1
Zhao, X.J.2
Wan, C.X.3
Zhao, C.S.4
Chen, Y.W.5
-
26
-
-
67649124270
-
In vivo study of porous strontiumdoped calcium polyphosphate scaffolds for bone substitute applications
-
Tian M, Chen F, Song W. In vivo study of porous strontiumdoped calcium polyphosphate scaffolds for bone substitute applications. J Mater Sci Mater Med. 2009;20:1505-12.
-
(2009)
J Mater Sci Mater Med
, vol.20
, pp. 1505-1512
-
-
Tian, M.1
Chen, F.2
Song, W.3
-
27
-
-
54349088457
-
Interaction of endothelial cells with biodegradable strontium-doped calcium polyphosphate for bone tissue engineering
-
Chen YW, Feng T, Shi GQ. Interaction of endothelial cells with biodegradable strontium-doped calcium polyphosphate for bone tissue engineering. Appl Surf Sci. 2008;255:331-5.
-
(2008)
Appl Surf Sci
, vol.255
, pp. 331-335
-
-
Chen, Y.W.1
Feng, T.2
Shi, G.Q.3
-
28
-
-
72949118283
-
In vitro study on the influence of strontium-doped calcium polyphosphate on the angiogenesisrelated behaviors of HUVECs
-
Chen YW, Shi GQ, Ding YL. In vitro study on the influence of strontium-doped calcium polyphosphate on the angiogenesisrelated behaviors of HUVECs. J Mater Sci Mater Med. 2008;19:2655-62.
-
(2008)
J Mater Sci Mater Med
, vol.19
, pp. 2655-2662
-
-
Chen, Y.W.1
Shi, G.Q.2
Ding, Y.L.3
-
29
-
-
0035710746
-
-DeltaDeltaCT method
-
DOI 10.1006/meth.2001.1262
-
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402-8. (Pubitemid 34164012)
-
(2001)
Methods
, vol.25
, Issue.4
, pp. 402-408
-
-
Livak, K.J.1
Schmittgen, T.D.2
-
30
-
-
0141499869
-
Is the calcium receptor a molecular target for the actions of strontium on bone?
-
Brown EM. Is the calcium receptor a molecular target for the actions of strontium on bone? Osteoporos Int. 2003;14:S25-34.
-
(2003)
Osteoporos Int
, vol.14
-
-
Brown, E.M.1
-
31
-
-
4644294488
-
In vitro effects of strontium ranelate on the extracellular calcium-sensing receptor
-
DOI 10.1016/j.bbrc.2004.08.209, PII S0006291X04020005
-
Coulonbe J, Faure H, Robin B, Ruat M. In vitro effects of strontium ranelate on the extraccllular calcium sensing receptor. Biochem Biophys Res Commun. 2004;323:1184-90. (Pubitemid 39296549)
-
(2004)
Biochemical and Biophysical Research Communications
, vol.323
, Issue.4
, pp. 1184-1190
-
-
Coulombe, J.1
Faure, H.2
Robin, B.3
Ruat, M.4
-
32
-
-
0038458741
-
Dose-dependent effects of strontium on osteoblast function and mineralization
-
DOI 10.1046/j.1523-1755.2003.00123.x
-
Verberckmoes SC, DeBroe ME, D'Haese PC. Dose-dependent effects of strontium on osteoblast function and mineralisation. Kidney Int. 2003;64:534-43. (Pubitemid 36871924)
-
(2003)
Kidney International
, vol.64
, Issue.2
, pp. 534-543
-
-
Verberckmoes, S.C.1
De Broe, M.E.2
D'Haese, P.C.3
-
33
-
-
31344444362
-
3-elicited differentiation of human osteoblastic cells: Roles of osterix, an osteoblast-related transcription factor
-
DOI 10.1016/j.matbio.2005.09.001, PII S0945053X05001198
-
Maehata Y, Takamizawa S, Ozawa S. Both direct and collagen-mediated signals are required for active vitamin D3-elicited differentiation of human osteoblastic cells: roles of osterix, an osteoblast-related transcription factor. Matrix Biol. 2006;25:47-58. (Pubitemid 43145811)
-
(2006)
Matrix Biology
, vol.25
, Issue.1
, pp. 47-58
-
-
Maehata, Y.1
Takamizawa, S.2
Ozawa, S.3
Kato, Y.4
Sato, S.5
Kubota, E.6
Hata, R.-I.7
-
34
-
-
1642413258
-
Promoting the cytocompatibility of polyurethane scaffolds via surface photo-grafting polymerization of acrylamide
-
DOI 10.1023/B:JMSM.0000015489.27261.f0
-
Zhu Y, Gao C, Guan J, Shen J. Promoting the cytocompatibility of polyurethane scaffolds via surface photo-grafting polymerization of acrylamide. J Mater Sci Mater Med. 2004;15:283-9. (Pubitemid 38388826)
-
(2004)
Journal of Materials Science: Materials in Medicine
, vol.15
, Issue.3
, pp. 283-289
-
-
Zhu, Y.1
Gao, C.2
Guan, J.3
Shen, J.4
-
35
-
-
34447249326
-
Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials
-
DOI 10.1016/j.biomaterials.2007.05.032, PII S0142961207004474
-
Ronald EU, Sartoris A, Peters K. Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Biomaterials. 2007;28:3965-76. (Pubitemid 47048370)
-
(2007)
Biomaterials
, vol.28
, Issue.27
, pp. 3965-3976
-
-
Unger, R.E.1
Sartoris, A.2
Peters, K.3
Motta, A.4
Migliaresi, C.5
Kunkel, M.6
Bulnheim, U.7
Rychly, J.8
James, K.C.9
-
36
-
-
0142147986
-
Extracellular Calcium Is a Potent Inducer of Cyclo-oxygenase-2 in Murine Osteoblasts Through an ERK Signaling Pathway
-
DOI 10.1359/jbmr.2003.18.10.1813
-
Choudhary S, Wadhwa S, Raisz LG, Alander C, Pilbeam CC. Extracellular calcium is a potent inducer of cyclo-oxygenase-2 in murine osteoblasts through an ERK signaling pathway. J Bone Miner Res. 2003;18:1813-24. (Pubitemid 37322559)
-
(2003)
Journal of Bone and Mineral Research
, vol.18
, Issue.10
, pp. 1813-1824
-
-
Choudhary, S.1
Wadhwa, S.2
Raisz, L.G.3
Alander, C.4
Pilbeam, C.C.5
-
37
-
-
79958082933
-
Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover
-
Street J, Bao M. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA. 2002;999:656-61.
-
(2002)
Proc Natl Acad Sci USA
, vol.999
, pp. 656-661
-
-
Street, J.1
Bao, M.2
-
38
-
-
0026700932
-
Structure, expression, and regulation of the major noncollagenous matrix proteins of bone
-
Young MF, Kerr JM, Ibaraki K. Structure, expression, and regulation of the major noncollagenous matrix proteins of bone. Clin Orthop. 1992;281:275-94.
-
(1992)
Clin Orthop
, vol.281
, pp. 275-294
-
-
Young, M.F.1
Kerr, J.M.2
Ibaraki, K.3
|