메뉴 건너뛰기




Volumn 2, Issue 4, 2010, Pages 285-290

Multiclass Pattern Recognition Extension for the New C-Mantec Constructive Neural Network Algorithm

Author keywords

Multiclass pattern recognition; Neural networks; Supervised learning

Indexed keywords

BENCH-MARK PROBLEMS; CLASSIFICATION ALGORITHM; CONSTRUCTIVE NEURAL NETWORK ALGORITHM; DIFFERENT SIZES; MULTI-CLASS; MULTI-CLASS PROBLEMS; MULTICLASS PATTERN RECOGNITION; PATTERN CLASSIFICATION; PREDICTION ACCURACY;

EID: 78649936404     PISSN: 18669956     EISSN: 18669964     Source Type: Journal    
DOI: 10.1007/s12559-010-9051-6     Document Type: Article
Times cited : (19)

References (14)
  • 3
    • 70349602258 scopus 로고    scopus 로고
    • Neural network architecture selection: can function complexity help?
    • Gómez I, Franco L, Jerez JM. Neural network architecture selection: Can function complexity help? Neural Process Lett. 2009; 30: 71-87.
    • (2009) Neural Process Lett , vol.30 , pp. 71-87
    • Gómez, I.1    Franco, L.2    Jerez, J.M.3
  • 4
    • 78649952559 scopus 로고    scopus 로고
    • Franco L, Elizondo D, Jerez JM, editors. Constructive neural networks. Berlin: Springer; 2010
    • Franco L, Elizondo D, Jerez JM, editors. Constructive neural networks. Berlin: Springer; 2010.
  • 5
    • 0027274189 scopus 로고
    • Neural network constructive algorithms: trading generalization for learning efficiency?
    • Smieja FJ. Neural network constructive algorithms: trading generalization for learning efficiency? Circuits Syst Signal Process. 1993; 12: 331-74.
    • (1993) Circuits Syst Signal Process , vol.12 , pp. 331-374
    • Smieja, F.J.1
  • 6
    • 84951714199 scopus 로고    scopus 로고
    • An empirical evaluation of constructive neural network algorithms in classification tasks
    • do Carmo Nicoletti MC, Bertini JR. An empirical evaluation of constructive neural network algorithms in classification tasks. Int J Innov Comput Appl. 2007; 1: 2-13.
    • (2007) Int J Innov Comput Appl , vol.1 , pp. 2-13
    • Do Carmo nicoletti, M.C.1    Bertini, J.R.2
  • 7
    • 36149031331 scopus 로고
    • Learning in feedforward layered networks: the tiling algorithm
    • Mezard M, Nadal JP. Learning in feedforward layered networks: the tiling algorithm. J Phys A. 1989; 22: 2191-204.
    • (1989) J Phys A , vol.22 , pp. 2191-2204
    • Mezard, M.1    Nadal, J.P.2
  • 8
    • 0000783575 scopus 로고
    • The upstart algorithm: a method for constructing and training feedforward neural networks
    • Frean M. The upstart algorithm: a method for constructing and training feedforward neural networks. Neural Comput. 1990; 2: 198-209.
    • (1990) Neural Comput , vol.2 , pp. 198-209
    • Frean, M.1
  • 9
    • 0033742041 scopus 로고    scopus 로고
    • Constructive neural-network learning algorithms for pattern classification
    • Parekh R, Yang J, Honavar V. Constructive neural-network learning algorithms for pattern classification. IEEE Trans Neural Netw. 2000; 11: 436-51.
    • (2000) IEEE Trans Neural Netw , vol.11 , pp. 436-451
    • Parekh, R.1    Yang, J.2    Honavar, V.3
  • 10
    • 57149137352 scopus 로고    scopus 로고
    • A new decomposition algorithm for threshold synthesis and generalization of Boolean functions
    • Subirats JL, Jerez JM, Franco L. A new decomposition algorithm for threshold synthesis and generalization of Boolean functions. IEEE Trans Circuits Syst I. 2008; 55: 3188-96.
    • (2008) IEEE Trans Circuits Syst I , vol.55 , pp. 3188-3196
    • Subirats, J.L.1    Jerez, J.M.2    Franco, L.3
  • 11
    • 33749240206 scopus 로고    scopus 로고
    • Multi-class pattern classification using neural networks
    • Ou G, Murphey YL. Multi-class pattern classification using neural networks. Pattern Recognit. 2007; 40: 418.
    • (2007) Pattern Recognit , vol.40 , pp. 418
    • Ou, G.1    Murphey, Y.L.2
  • 13
    • 1642380461 scopus 로고    scopus 로고
    • The problem of overfitting
    • Hawkins DM. The problem of overfitting. J Chem Info Comput Sci. 2004; 44: 1-12.
    • (2004) J Chem Info Comput Sci , vol.44 , pp. 1-12
    • Hawkins, D.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.