-
1
-
-
2542567719
-
Semi-supervised clustering by seeding
-
Basu, S., Banerjee, A.,Mooney, R.J.: Semi-supervised clustering by seeding. In: Proceedings of the Nineteenth International Conference on Machine Learning (ICML 2002), pp. 27-34 (2002)
-
(2002)
Proceedings of the Nineteenth International Conference on Machine Learning (ICML 2002)
, pp. 27-34
-
-
Basu, S.1
Banerjee, A.2
Mooney, R.J.3
-
2
-
-
12244300524
-
A probabilistic framework for semi-supervised clustering
-
Basu, S., Bilenko, M., Mooney, R.J.: A probabilistic framework for semi-supervised clustering. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 59-68 (2004)
-
(2004)
Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 59-68
-
-
Basu, S.1
Bilenko, M.2
Mooney, R.J.3
-
3
-
-
85042972591
-
-
Chapman & Hall/CRC
-
Basu, S., Davidson, I., Wagstaff, K.: Constrained Clustering: Advances in Algorithms, Theory, and Applications. Chapman & Hall/CRC (2008)
-
(2008)
Constrained Clustering: Advances in Algorithms, Theory, and Applications
-
-
Basu, S.1
Davidson, I.2
Wagstaff, K.3
-
4
-
-
14344264451
-
Integrating constraints and metric learning in semi-supervised clustering
-
Bilenko, M., Basu, S., Mooney, R.J.: Integrating constraints and metric learning in semi-supervised clustering. In: Proceedings of the Twenty-first International Conference on Machine Learning, ICML 2004 (2004)
-
Proceedings of the Twenty-first International Conference on Machine Learning, ICML 2004 (2004)
-
-
Bilenko, M.1
Basu, S.2
Mooney, R.J.3
-
5
-
-
33646435064
-
Agglomerative Hierarchical Clustering with Constraints: Theoretical and Empirical Results
-
Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. Springer, Heidelberg
-
Davidson, I., Ravi, S.S.: Agglomerative Hierarchical Clustering with Constraints: Theoretical and Empirical Results. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 59-70. Springer, Heidelberg (2005)
-
(2005)
LNCS (LNAI)
, vol.3721
, pp. 59-70
-
-
Davidson, I.1
Ravi, S.S.2
-
6
-
-
84873178417
-
A sat-based framework for efficient constrained clustering
-
Jonker, W., Petković, M. (eds.) SDM 2010. Springer, Heidelberg
-
Davidson, I., Ravi, S.S., Shamis, L.: A sat-based framework for efficient constrained clustering. In: Jonker, W., Petković, M. (eds.) SDM 2010. LNCS, vol. 6358, pp. 94-105. Springer, Heidelberg (2010)
-
(2010)
LNCS
, vol.6358
, pp. 94-105
-
-
Davidson, I.1
Ravi, S.S.2
Shamis, L.3
-
7
-
-
33750288047
-
Measuring Constraint-Set Utility for Partitional Clustering Algorithms
-
Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. Springer, Heidelberg
-
Davidson, I.,Wagstaff, K.L., Basu, S.: Measuring Constraint-Set Utility for Partitional Clustering Algorithms. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 115-126. Springer, Heidelberg (2006)
-
(2006)
LNCS (LNAI)
, vol.4213
, pp. 115-126
-
-
Davidson, I.1
Wagstaff, K.L.2
Basu, S.3
-
10
-
-
34548564268
-
A framework for semi-supervised learning based on subjective and objective clustering criteria
-
Halkidi, M., Gunopulos, D., Kumar, N., Vazirgiannis, M., Domeniconi, C.: A framework for semi-supervised learning based on subjective and objective clustering criteria. In: Proceedings of the 5th IEEE International Conference on Data Mining (ICDM 2005), pp. 637-640 (2005)
-
(2005)
Proceedings of the 5th IEEE International Conference on Data Mining (ICDM 2005)
, pp. 637-640
-
-
Halkidi, M.1
Gunopulos, D.2
Kumar, N.3
Vazirgiannis, M.4
Domeniconi, C.5
-
11
-
-
0032686723
-
Chameleon: Hierarchical clustering using dynamic modeling
-
Karypis, G., Han, E.-H., Kumar, V.: Chameleon: Hierarchical clustering using dynamic modeling. IEEE Computer 32(8), 68-75 (1999)
-
(1999)
IEEE Computer
, vol.32
, Issue.8
, pp. 68-75
-
-
Karypis, G.1
Han, E.-H.2
Kumar, V.3
-
13
-
-
9444294778
-
From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering
-
Klein, D., Kamvar, S.D.,Manning, C.D.: From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering. In: Proceedings of the Nineteenth International Conference on Machine Learning (ICML 2002), pp. 307-314 (2002)
-
(2002)
Proceedings of the Nineteenth International Conference on Machine Learning (ICML 2002)
, pp. 307-314
-
-
Klein, D.1
Kamvar, S.D.2
Manning, C.D.3
-
14
-
-
31844447616
-
Semi-supervised graph clustering: A kernel approach
-
Kulis, B., Basu, S., Dhillon, I.S., Mooney, R.J.: Semi-supervised graph clustering: a kernel approach. In: Proceedings of the Twenty-Second International Conference on Machine Learning (ICML 2005), pp. 457-464 (2005)
-
(2005)
Proceedings of the Twenty-Second International Conference on Machine Learning (ICML 2005)
, pp. 457-464
-
-
Kulis, B.1
Basu, S.2
Dhillon, I.S.3
Mooney, R.J.4
-
15
-
-
77951196312
-
Semi-supervised density-based clustering
-
Perner, P. (ed.) ICDM 2009. Springer, Heidelberg
-
Lelis, L., Sander, J.: Semi-supervised density-based clustering. In: Perner, P. (ed.) ICDM 2009. LNCS, vol. 5633, pp. 842-847. Springer, Heidelberg (2009)
-
(2009)
LNCS
, vol.5633
, pp. 842-847
-
-
Lelis, L.1
Sander, J.2
-
16
-
-
84950632109
-
Objective criteria for the evaluation of clustering methods
-
Rand,W.M.: Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association 66(336), 846-850 (1971)
-
(1971)
Journal of the American Statistical Association
, vol.66
, Issue.336
, pp. 846-850
-
-
Rand, W.M.1
-
17
-
-
77958035523
-
Density based semi-supervised clustering
-
Ruiz, C., Spiliopoulou, M., Menasalvas, E.: Density based semi-supervised clustering. Data Mining and Knowledge Discovery 21(3), 345-370 (2009)
-
(2009)
Data Mining and Knowledge Discovery
, vol.21
, Issue.3
, pp. 345-370
-
-
Ruiz, C.1
Spiliopoulou, M.2
Menasalvas, E.3
-
18
-
-
25144439604
-
-
US edition. Addison Wesley, Reading
-
Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining, US edition. Addison Wesley, Reading (2005)
-
(2005)
Introduction to Data Mining
-
-
Tan, P.-N.1
Steinbach, M.2
Kumar, V.3
-
19
-
-
0042377235
-
Constrained k-means clustering with background knowledge
-
Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S.: Constrained k-means clustering with background knowledge. In: Proceedings of the Eighteenth International Conference on Machine Learning (ICML 2001), pp. 577-584 (2001)
-
(2001)
Proceedings of the Eighteenth International Conference on Machine Learning (ICML 2001)
, pp. 577-584
-
-
Wagstaff, K.1
Cardie, C.2
Rogers, S.3
Schrödl, S.4
|