메뉴 건너뛰기




Volumn 80 LNEE, Issue , 2011, Pages 251-293

Descent methods for nonnegative matrix factorization

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION ERRORS; DESCENT METHOD; MATRIX; NONNEGATIVE MATRIX FACTORIZATION; NONNEGATIVE TENSOR FACTORIZATIONS;

EID: 79957593201     PISSN: 18761100     EISSN: 18761119     Source Type: Book Series    
DOI: 10.1007/978-94-007-0602-6_13     Document Type: Conference Paper
Times cited : (17)

References (25)
  • 1
    • 51749112518 scopus 로고    scopus 로고
    • Algorithms, initializations, and convergence for the nonnegative matrix factorization
    • North Caroline State University, USA
    • Albright R, Cox J, Duling D, Langville AN, Meyer CD (2006) Algorithms, initializations, and convergence for the nonnegative matrix factorization. NCSU technical report math 81706, North Caroline State University, USA
    • (2006) NCSU Technical Report Math 81706
    • Albright, R.1    Cox, J.2    Duling, D.3    Langville, A.N.4    Meyer, C.D.5
  • 5
    • 0642334046 scopus 로고    scopus 로고
    • A fast non-negativity-constrained least squares algorithm
    • Bro R, De Jong S (1997) A fast non-negativity constrained least squares algorithm. J Chemom 11(5):393-401 (Pubitemid 127478570)
    • (1997) Journal of Chemometrics , vol.11 , Issue.5 , pp. 393-401
    • Bro, R.1    De Jong, S.2
  • 6
    • 7444224120 scopus 로고    scopus 로고
    • On reduced rank nonnegative matrix factorization for symmetric nonnegative matrices
    • Catral M, Han L, Neumann M, Plemmons RJ (2004) On reduced rank nonnegative matrix factorization for symmetric nonnegative matrices. Linear Algebra Appl 393:107-126
    • (2004) Linear Algebra Appl , vol.393 , pp. 107-126
    • Catral, M.1    Han, L.2    Neumann, M.3    Plemmons, R.J.4
  • 7
    • 37749030729 scopus 로고    scopus 로고
    • Hierarchical ALS algorithms for nonnegative matrix and 3D tensor factorization
    • Proceedings of independent component analysis, ICA 2007, London, UK, September 9-12, 2007, Springer
    • Cichocki A, Zdunek R, Amari S (2007) Hierarchical ALS algorithms for nonnegative matrix and 3D tensor factorization. In: Proceedings of independent component analysis, ICA 2007, London, UK, September 9-12, 2007, Lecture Notes in Computer Science, vol 4666, pp 169-176. Springer
    • (2007) Lecture Notes in Computer Science , vol.4666 , pp. 169-176
    • Cichocki, A.1    Zdunek, R.2    Amari, S.3
  • 9
    • 47649090653 scopus 로고    scopus 로고
    • Convex and semi-nonnegative matrix factorizations
    • Technical report
    • Ding C, Li T, Jordan MI (2006) Convex and semi-nonnegative matrix factorizations. Technical report, LBNL Tech Report 60428
    • (2006) LBNL Tech Report 60428
    • Ding, C.1    Li, T.2    Jordan, M.I.3
  • 10
    • 74449093327 scopus 로고    scopus 로고
    • Nonnegative factorization and the maximum edge biclique problem
    • Université catholique de Louvain, Belgium
    • Gillis N, Glineur F (2008) Nonnegative factorization and the maximum edge biclique problem. CORE Discussion paper, no. 64, Université catholique de Louvain, Belgium
    • (2008) CORE Discussion Paper, No. 64
    • Gillis, N.1    Glineur, F.2
  • 11
    • 0004236492 scopus 로고    scopus 로고
    • 3rd edn. The Johns Hopkins Univ. Press, Baltimore
    • Golub G, Van Loan CF (1996) Matrix computations. vol xxvii, 3rd edn. The Johns Hopkins Univ. Press, Baltimore, p 694
    • (1996) Matrix Computations , vol.27 , pp. 694
    • Golub, G.1    Van Loan, C.F.2
  • 12
    • 0001930482 scopus 로고
    • Matrix nearness problems and applications
    • Oxford University Press
    • Higham NJ (1989) Matrix nearness problems and applications. In: Applications of matrix theory. Oxford University Press, pp 1-27
    • (1989) Applications of Matrix Theory , pp. 1-27
    • Higham, N.J.1
  • 15
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • Hoyer PO (2004) Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 5:1457-1469
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 16
    • 0032183760 scopus 로고    scopus 로고
    • A semidiscrete matrix decomposition for latent semantic indexing information retrieval
    • Kolda TG, O'Leary DP (1998) A semidiscrete matrix decomposition for latent semantic indexing information retrieval. ACM Trans. Inform Syst (TOIS) 16(4):322-346
    • (1998) ACM Trans. Inform Syst (TOIS) , vol.16 , Issue.4 , pp. 322-346
    • Kolda, T.G.1    O'Leary, D.P.2
  • 18
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401:788-791
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 19
    • 33748654502 scopus 로고    scopus 로고
    • Technical report information and support services technical report ISSTECH-95-013, Department of Computer Science, National Taiwan University
    • Lin C-J (2005) Projected gradient methods for non-negative matrix factorization. Technical report information and support services technical report ISSTECH-95-013, Department of Computer Science, National Taiwan University
    • (2005) Projected Gradient Methods for Non-negative Matrix Factorization
    • Lin, C.-J.1
  • 20
    • 36348966695 scopus 로고    scopus 로고
    • On the convergence of multiplicative update algorithms for non-negative matrix factorization
    • Lin C-J (2007) On the convergence of multiplicative update algorithms for non-negative matrix factorization. IEEE Trans Neural Netw 18(6):1589-1596
    • (2007) IEEE Trans Neural Netw , vol.18 , Issue.6 , pp. 1589-1596
    • Lin, C.-J.1
  • 21
    • 35548969471 scopus 로고    scopus 로고
    • Projected gradient methods for non-negative matrix factorization
    • Lin C-J (2007) Projected gradient methods for non-negative matrix factorization. Neural Comput 19(10):2756-2779
    • (2007) Neural Comput , vol.19 , Issue.10 , pp. 2756-2779
    • Lin, C.-J.1
  • 22
    • 23744469721 scopus 로고    scopus 로고
    • Interior-point gradient method for large-scale totally nonnegative least squares problems
    • DOI 10.1007/s10957-005-2668-z
    • Merritt M, Zhang Y (2005) Interior-point gradient method for large-scale totally nonnegative least squares problems. J Optim Theory Appl 126(1):191-202 (Pubitemid 41125942)
    • (2005) Journal of Optimization Theory and Applications , vol.126 , Issue.1 , pp. 191-202
    • Merritt, M.1    Zhang, Y.2
  • 23
    • 0030775193 scopus 로고    scopus 로고
    • A weighted non-negative least squares algorithm for three-way 'parafac' factor analysis
    • Paatero P (1997) A weighted non-negative least squares algorithm for three-way 'parafac' factor analysis. Chemom Intell Lab Syst 38(2):223-242
    • (1997) Chemom Intell Lab Syst , vol.38 , Issue.2 , pp. 223-242
    • Paatero, P.1
  • 24
    • 0028561099 scopus 로고
    • Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
    • Paatero P, Tapper U (1994) Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5(1):111-126
    • (1994) Environmetrics , vol.5 , Issue.1 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 25
    • 33646682646 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for spectral data analysis
    • DOI 10.1016/j.laa.2005.06.025, PII S002437950500340X
    • Pauca VP, Piper J, Plemmons RJ (2006) Nonnegative matrix factorization for spectral data analysis. Linear Algebra Appl 416(1):29-47 (Pubitemid 43737212)
    • (2006) Linear Algebra and Its Applications , vol.416 , Issue.1 , pp. 29-47
    • Pauca, V.P.1    Piper, J.2    Plemmons, R.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.