메뉴 건너뛰기




Volumn 6119 LNAI, Issue PART 2, 2010, Pages 435-448

EigenSpokes: Surprising patterns and scalable community chipping in large graphs

Author keywords

[No Author keywords available]

Indexed keywords

COMMUNITY STRUCTURES; FAST ALGORITHMS; FUNDAMENTAL ATTRIBUTES; LARGE GRAPHS; MOBILE CALLS; PATENT CITATION; REAL-WORLD DATASETS; SINGULAR VECTORS; SOCIAL GRAPHS; SPARSE GRAPHS;

EID: 79956333190     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-13672-6_42     Document Type: Conference Paper
Times cited : (96)

References (26)
  • 4
    • 84958540312 scopus 로고    scopus 로고
    • Communities of interest
    • Advances in Intelligent Data Analysis
    • Cortes, C., Pregibon, D., Volinsky, C.: Communities of interest. In: Hoffmann, F., Adams, N., Fisher, D., Guimarães, G., Hand, D.J. (eds.) IDA 2001. LNCS, vol. 2189, pp. 105-114. Springer, Heidelberg (2001) (Pubitemid 33348490)
    • (2001) Lecture Notes in Computer Science , Issue.2189 , pp. 105-114
    • Cortes, C.1    Pregibon, D.2    Volinsky, C.3
  • 8
    • 0032131147 scopus 로고    scopus 로고
    • A fast and high quality multilevel scheme for partitioning irregular graphs
    • PII S1064827595287997
    • Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Jnl. on Sci. Comp. 20(1), 359-392 (1999) (Pubitemid 128689516)
    • (1998) SIAM Journal of Scientific Computing , vol.20 , Issue.1 , pp. 359-392
    • Karypis, G.1    Kumar, V.2
  • 9
    • 34548576068 scopus 로고    scopus 로고
    • Fixing two weaknesses of the spectral method
    • Lang, K.: Fixing two weaknesses of the spectral method. In: Proc. of NIPS (2006)
    • (2006) Proc. of NIPS
    • Lang, K.1
  • 10
    • 52949106331 scopus 로고    scopus 로고
    • Statistical properties of community structure in large social and information networks
    • Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Statistical properties of community structure in large social and information networks. In: WWW (2008)
    • (2008) WWW
    • Leskovec, J.1    Lang, K.J.2    Dasgupta, A.3    Mahoney, M.W.4
  • 12
    • 33749468596 scopus 로고    scopus 로고
    • Finding community structure in networks using the eigenvectors of matrices
    • 036104
    • Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(036104) (2006)
    • (2006) Phys. Rev. e , vol.74
    • Newman, M.E.J.1
  • 14
    • 34247223815 scopus 로고    scopus 로고
    • Quantifying social group evolution
    • Palla, G., Barabasi, A.-L., Vicsek, T.: Quantifying social group evolution. Nature 446(664) (2007)
    • (2007) Nature , vol.446 , Issue.664
    • Palla, G.1    Barabasi, A.-L.2    Vicsek, T.3
  • 16
    • 84957690614 scopus 로고    scopus 로고
    • A factorization approach to grouping
    • Computer Vision - ECCV'98
    • Perona, P., Freeman, W.T.: A factorization approach to grouping. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 655-670. Springer, Heidelberg (1998) (Pubitemid 128093111)
    • (1998) Lecture Notes in Computer Science , Issue.1406 , pp. 655-670
    • Perona, P.1    Freeman, W.2
  • 19
    • 0032121920 scopus 로고    scopus 로고
    • Quantitative measures of change based on feature organization: Eigenvalues and eigenvectors
    • Sarkar, S., Boyer, K.L.: Quantitative measures of changed based on feature organization: Eigenvalues and eigenvectors. Computer Vision and Image Understanding 71(1), 110-136 (1998) (Pubitemid 128420524)
    • (1998) Computer Vision and Image Understanding , vol.71 , Issue.1 , pp. 110-136
    • Sarkar, S.1    Boyer, K.L.2
  • 20
    • 70350647698 scopus 로고    scopus 로고
    • Scalable graph clustering using stochastic flows: Applications to community discovery
    • Satuluri, V., Parthasarathy, S.: Scalable graph clustering using stochastic flows: applications to community discovery. In: Proc. of ACM SIGKDD (2009)
    • (2009) Proc. of ACM SIGKDD
    • Satuluri, V.1    Parthasarathy, S.2
  • 22
    • 56449097024 scopus 로고    scopus 로고
    • Data spectroscopy: Learning mixture models using eigenspaces of convolution operators
    • Shi, T., Belkin, M., Yu, B.: Data Spectroscopy: Learning Mixture Models using Eigenspaces of Convolution Operators. In: Proc. of ICML (2008)
    • (2008) Proc. of ICML
    • Shi, T.1    Belkin, M.2    Yu, B.3
  • 24
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • von Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17(4), 395-416 (2007)
    • (2007) Statistics and Computing , vol.17 , Issue.4 , pp. 395-416
    • Von Luxburg, U.1
  • 25
    • 84880106426 scopus 로고    scopus 로고
    • A spectral clustering approach to finding communities in graphs
    • White, S., Smyth, P.: A spectral clustering approach to finding communities in graphs. In: Proc. of SDM (2005)
    • (2005) Proc. of SDM
    • White, S.1    Smyth, P.2
  • 26
    • 79956305727 scopus 로고    scopus 로고
    • On randomness measures for social networks
    • Ying, X., Wu, X.: On randomness measures for social networks. In: SDM (2009)
    • (2009) SDM
    • Ying, X.1    Wu, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.