|
Volumn , Issue , 2008, Pages 936-943
|
Data spectroscopy: Learning mixture models using eigenspaces of convolution operators
|
Author keywords
[No Author keywords available]
|
Indexed keywords
APPLICATIONS.;
CONVOLUTION OPERATORS;
EIGENSPACES;
EIGENVALUES AND EIGENVECTORS;
GAUSSIAN MIXTURE MODELS;
GAUSSIAN MIXTURES;
KERNEL FUNCTIONS;
KERNEL MATRIXES;
MIXTURE COMPONENTS;
MIXTURE DISTRIBUTIONS;
MIXTURE MODELS;
PARAMETRIC DISTRIBUTIONS;
PRINCIPAL COMPONENTS ANALYSES;
SAMPLED DATUMS;
SPECTRAL CLUSTERING;
SPECTRAL FRAMEWORKS;
SPECTRAL TECHNIQUES;
COVARIANCE MATRICES;
KERNEL MATRICES;
PRINCIPAL COMPONENTS;
SAMPLED DATUM;
THEORETICAL FRAMEWORKS;
COMMUNICATION CHANNELS (INFORMATION THEORY);
COVARIANCE MATRIX;
LEARNING SYSTEMS;
OBJECT RECOGNITION;
PRINCIPAL COMPONENT ANALYSIS;
ROBOT LEARNING;
TRELLIS CODES;
MIXTURES;
|
EID: 56449097024
PISSN: None
EISSN: None
Source Type: Conference Proceeding
DOI: None Document Type: Conference Paper |
Times cited : (27)
|
References (13)
|