메뉴 건너뛰기




Volumn 54, Issue 5, 2011, Pages 1183-1192

Application of Bayesian approach to hydrological frequency analysis

Author keywords

Bayesian theory; hydrological frequency analysis; Markov Chain Monte Carlo; posterior distribution; prior distribution

Indexed keywords

BAYESIAN NETWORKS; FLOOD CONTROL; FLOODS; FREQUENCY ESTIMATION; MARKOV CHAINS; MONTE CARLO METHODS; PROBABILITY DISTRIBUTIONS; UNCERTAINTY ANALYSIS;

EID: 79956272206     PISSN: 16747321     EISSN: 18691900     Source Type: Journal    
DOI: 10.1007/s11431-010-4229-4     Document Type: Article
Times cited : (21)

References (39)
  • 1
    • 0001874255 scopus 로고
    • Frequency analysis of extreme events
    • R. Maidment (eds). McGraw-Hill New York
    • Stedinger J R, Vogel R M, Foufula-Georgiou E. Frequency analysis of extreme events. In: Maidment R, ed., Handbook of Hydrology. New York: McGraw-Hill, 1992, 18.1-18.66
    • (1992) Handbook of Hydrology , pp. 181-1866
    • Stedinger, J.R.1    Vogel, R.M.2    Foufula-Georgiou, E.3
  • 2
    • 69249129453 scopus 로고    scopus 로고
    • Model selection techniques for the frequency analysis of hydrological extremes
    • 10.1029/2007WR006666
    • F. Laio G. Di Baldassarre A. Montanari 2009 Model selection techniques for the frequency analysis of hydrological extremes Water Resour Res 45 W07416 10.1029/2007WR006666
    • (2009) Water Resour Res , vol.45 , pp. 07416
    • Laio, F.1    Di Baldassarre, G.2    Montanari, A.3
  • 4
    • 34548156762 scopus 로고    scopus 로고
    • Log-pearson type 3 distribution and its application in flood frequency analysis. II: Parameter estimation methods
    • DOI 10.1061/(ASCE)1084-0699(2007)12:5(492)
    • V. W. Griffis J. R. Stedinger 2007 Log-Pearson type 3 distribution and its application in flood frequency analysis. II: Parameter estimation methods J Hydrol Eng 12 5 492 500 10.1061/(ASCE)1084-0699(2007)12:5(492) (Pubitemid 47307899)
    • (2007) Journal of Hydrologic Engineering , vol.12 , Issue.5 , pp. 492-500
    • Griffis, V.W.1    Stedinger, J.R.2
  • 5
    • 0018721622 scopus 로고
    • Probability weighted moments compared with some traditional techniques in estimating Gumbel parameters and quantiles
    • J. M. Landwehr N. C. Matalas J. R. Wallias 1979 Probanility weighted moments compared with some traditional techniques in eatimating Gumbel parameters and quantiles Water Resour Res 15 5 1055 1064 10.1029/WR015i005p01055 (Pubitemid 10255845)
    • (1979) Water Resources Research , vol.15 , Issue.5 , pp. 1055-1064
    • Landwehr, J.M.1    Matalas, N.C.2    Wallis, J.R.3
  • 6
    • 0018713386 scopus 로고
    • Probability weighted moments: definition and relation to parameters of several distributions expressable in inverse form
    • J. A. Greenwood J. M. Landwehr N. C. Matalas, et al. 1979 Probability weighted moments: Definition and relation to parameters of several distributions expressable in inverse form Water Resour Res 15 5 1049 1054 10.1029/WR015i005p01049 (Pubitemid 10255846)
    • (1979) Water Resources Research , vol.15 , Issue.5 , pp. 1049-1054
    • Greenwood, J.A.1    Landwehr, J.M.2    Matalas, N.C.3    Wallis, J.R.4
  • 7
    • 0018673392 scopus 로고
    • Estimation of parameters and quantiles of Wakeby distributions
    • 10.1029/WR015i006p01361
    • J. M. Landwehr N. C. Matalas J. R. Wallias 1979 Estimation of parameters and quantiles of Wakeby distributions Water Resour Res 15 6 1361 1379 10.1029/WR015i006p01361
    • (1979) Water Resour Res , vol.15 , Issue.6 , pp. 1361-1379
    • Landwehr, J.M.1    Matalas, N.C.2    Wallias, J.R.3
  • 8
    • 0019727509 scopus 로고
    • Regional flood frequency estimation and network design
    • 10.1029/WR017i004p01167
    • N. P. Greis E. F. Wood 1981 Regional flood frequency estimation and network design Water Resour Res 17 4 1167 1177 10.1029/WR017i004p01167
    • (1981) Water Resour Res , vol.17 , Issue.4 , pp. 1167-1177
    • Greis, N.P.1    Wood, E.F.2
  • 9
    • 0022113451 scopus 로고
    • Estimation of the generalized extreme-value distribution by the method of probability-weighted moments
    • J. R. M. Hosking J. R. Wallis E. F. Wood 1985 Estimation of the generalized extreme-value distribution by the method of probability-weighted moments Technometrics 27 3 251 261 10.2307/1269706 797563 (Pubitemid 15549855)
    • (1985) Technometrics , vol.27 , Issue.3 , pp. 251-261
    • Hosking, J.R.M.1    Wallis, J.R.2    Wood, E.F.3
  • 10
    • 0022465318 scopus 로고
    • The value of historical data in flood frequency analysis
    • 11 , Oct. 1986
    • J. R. M. Hosking J. R. Wallis 1986 The value of historical data in flood frequency analysis Water Resour Res 22 11 1606 1612 10.1029/WR022i011p01606 (Pubitemid 182910)
    • (1986) Water Resour Res , vol.22 , pp. 1606-1612
    • Hosking, J.R.M.1    Wallis, J.R.2
  • 11
    • 0024193816 scopus 로고
    • The application of probability weighted moments in estimating the parameters of the Pearson Type Three distribution
    • D. Song J. Ding 1988 The application of probability weighted moments in estimating the parameters of the Pearson type three distribution J Hydrol 101 1-4 47 61 10.1016/0022-1694(88)90027-3 (Pubitemid 19297342)
    • (1988) Journal of Hydrology , vol.101 , Issue.1-4 , pp. 47-61
    • Song Dedun1    Ding Jing2
  • 12
    • 0024193236 scopus 로고
    • The determination of probability weighted moments with the incorporation of extraordinary values into sample data and their application to estimating parameters for the Pearson Type Three distribution
    • J. Ding R. Yang 1988 The determination of probability weighted moments with the incorporation of extraordinary values into sample data and their application to estimating parameters for the Pearson type three distribution J Hydrol 101 1-4 63 81 (Pubitemid 19297343)
    • (1988) Journal of Hydrology , vol.101 , Issue.1-4 , pp. 63-81
    • Ding Jing1    Yang Rongfu2
  • 13
    • 0036846849 scopus 로고    scopus 로고
    • The method of self-determined probability weighted moments revisited
    • DOI 10.1016/S0022-1694(02)00174-9, PII S0022169402001749
    • T. M. Whalen G. T. Savage G. D. Jeong 2002 The method of self-determined probability weighted moments revisited J Hydrol 268 1-4 177 191 10.1016/S0022-1694(02)00174-9 (Pubitemid 35307229)
    • (2002) Journal of Hydrology , vol.268 , Issue.1-4 , pp. 177-191
    • Whalen, T.M.1    Savage, G.T.2    Jeong, G.D.3
  • 14
    • 0000310360 scopus 로고
    • L-moments: Analysis and estimation of distributions using linear combinations of order statistics
    • 0703.62018 1049304
    • J. R. M. Hosking 1990 L-moments: Analysis and estimation of distributions using linear combinations of order statistics J Roy Stat Soc B 52 1 105 124 0703.62018 1049304
    • (1990) J Roy Stat Soc B , vol.52 , Issue.1 , pp. 105-124
    • Hosking, J.R.M.1
  • 16
    • 26944478564 scopus 로고    scopus 로고
    • On the characterization of distributions by their L-moments
    • DOI 10.1016/j.jspi.2004.06.004, PII S0378375804002514
    • J. R. M. Hosking 2006 On the characterization of distributions by their L-moments J Statist Plan Infer 136 1 193 198 10.1016/j.jspi.2004.06.004 1079.62017 2207180 (Pubitemid 41472207)
    • (2006) Journal of Statistical Planning and Inference , vol.136 , Issue.1 , pp. 193-198
    • Hosking, J.R.M.1
  • 17
    • 0035248477 scopus 로고    scopus 로고
    • The utility of L-moment ratio diagrams for selecting a regional probability distribution
    • 10.1080/02626660109492806
    • M. C. Peel Q. J. Wang R. M. Vogel, et al. 2001 The utility of L-moment ratio diagrams for selecting a regional probability distribution Hydrolog Sci J 46 1 147 156 10.1080/02626660109492806
    • (2001) Hydrolog Sci J , vol.46 , Issue.1 , pp. 147-156
    • Peel, M.C.1    Wang, Q.J.2    Vogel, R.M.3
  • 19
    • 0016522035 scopus 로고
    • A Bayesian framework for the use of regional information in hydrology
    • 10.1029/WR011i003p00405
    • G. J. Vicens I. Rodriguez-Iturbe J. C. Schaake Jr 1975 A Bayesian framework for the use of regional information in hydrology Water Resour Res 11 3 405 414 10.1029/WR011i003p00405
    • (1975) Water Resour Res , vol.11 , Issue.3 , pp. 405-414
    • Vicens, G.J.1    Rodriguez-Iturbe, I.2    Schaake Jr., J.C.3
  • 20
    • 0020971819 scopus 로고
    • Design events with specified flood risk
    • 10.1029/WR019i002p00511
    • J. R. Stedinger 1983 Design events with specified flood risk Water Resour Res 19 2 511 522 10.1029/WR019i002p00511
    • (1983) Water Resour Res , vol.19 , Issue.2 , pp. 511-522
    • Stedinger, J.R.1
  • 21
    • 0016544456 scopus 로고
    • Bayesian inference and decision making for extreme hydrologic events
    • 10.1029/WR011i004p00533
    • E. F. Wood I. Rodriguez-Iturbe 1975 Bayesian inference and decision making for extreme hydrologic events Water Resour Res 11 4 533 542 10.1029/WR011i004p00533
    • (1975) Water Resour Res , vol.11 , Issue.4 , pp. 533-542
    • Wood, E.F.1    Rodriguez-Iturbe, I.2
  • 22
    • 0016647131 scopus 로고
    • A Bayesian approach to analyzing uncertainty among flood frequency models
    • 10.1029/WR011i006p00839
    • E. F. Wood I. Rodriguez-Iturbe 1975 A Bayesian approach to analyzing uncertainty among flood frequency models Water Resour Res 11 6 839 843 10.1029/WR011i006p00839
    • (1975) Water Resour Res , vol.11 , Issue.6 , pp. 839-843
    • Wood, E.F.1    Rodriguez-Iturbe, I.2
  • 23
    • 0019110942 scopus 로고
    • Bayesian frequency analysis
    • W. H. Tang 1980 Bayesian frequency analysis J Hydraul Div-ASCE 106 1203 1218
    • (1980) J Hydraul Div-ASCE , vol.106 , pp. 1203-1218
    • Tang, W.H.1
  • 25
    • 0001087443 scopus 로고
    • Combining site-specific and regional information: An empirical Bayes approach
    • 10.1029/WR018i002p00306
    • G. Kuczera 1982 Combining site-specific and regional information: An empirical Bayes approach Water Resour Res 18 2 306 314 10.1029/WR018i002p00306
    • (1982) Water Resour Res , vol.18 , Issue.2 , pp. 306-314
    • Kuczera, G.1
  • 26
    • 0032918166 scopus 로고    scopus 로고
    • Comprehensive at-site flood frequency analysis using Monte Carlo Bayesian inference
    • DOI 10.1029/1999WR900012
    • G. Kuczera 1999 Comprehensive at-site flood frequency analysis using Monte Carlo Bayesian inference Water Resour Res 35 5 1551 1557 10.1029/1999WR900012 (Pubitemid 29207988)
    • (1999) Water Resources Research , vol.35 , Issue.5 , pp. 1551-1557
    • Kuczera, G.1
  • 27
    • 0036563023 scopus 로고    scopus 로고
    • Bayesian flood frequency analysis with paleohydrologic bound data
    • 10.1029/2000WR000028
    • D. R. H. O'Connell D. A. Ostenaa D. R. Levish, et al. 2002 Bayesian flood frequency analysis with paleohydrologic bound data Water Resour Res 38 5 1058 10.1029/2000WR000028
    • (2002) Water Resour Res , vol.38 , Issue.5 , pp. 1058
    • O'Connell, D.R.H.1    Ostenaa, D.A.2    Levish, D.R.3
  • 28
    • 28244446739 scopus 로고    scopus 로고
    • Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation
    • DOI 10.1029/2004WR003445, W10419
    • D. S. Reis Jr J. R. Stedinger E. S. Martins 2005 Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation Water Resour Res 41 W10419 10.1029/2004WR003445 (Pubitemid 41705703)
    • (2005) Water Resources Research , vol.41 , Issue.10
    • Reis Jr., D.S.1    Stedinger, J.R.2    Martins, E.S.3
  • 29
    • 26944484410 scopus 로고    scopus 로고
    • Bayesian MCMC flood frequency analysis with historical information
    • DOI 10.1016/j.jhydrol.2005.02.028, PII S0022169405000314
    • D. S. Reis Jr J. R. Stedinger 2005 Bayesian MCMC flood frequency analysis with historical information J Hydrol 313 1-2 97 116 (Pubitemid 41472024)
    • (2005) Journal of Hydrology , vol.313 , Issue.1-2 , pp. 97-116
    • Reis Jr., D.S.1    Stedinger, J.R.2
  • 30
    • 33846401198 scopus 로고    scopus 로고
    • A parametric Bayesian combination of local and regional information in flood frequency analysis
    • DOI 10.1029/2005WR004397
    • O. Seidou T. B. M. J. Ouarda M. Barbet, et al. 2006 A parametric Bayesian combination of local and regional information in flood frequency analysis Water Resour Res 42 W11408 10.1029/2005WR004397 (Pubitemid 46134879)
    • (2006) Water Resources Research , vol.42 , Issue.11
    • Seidou, O.1    Ouarda, T.B.M.J.2    Barbet, M.3    Bruneau, P.4    Bobee, B.5
  • 32
    • 34848831164 scopus 로고    scopus 로고
    • Usefulness of the reversible jump Markov chain Monte Carlo model in regional flood frequency analysis
    • DOI 10.1029/2006WR005525
    • M. Ribatet E. Sauquet J. M. Gresillon, et al. 2007 Usefulness of the reversible jump Markov Chain Monte Carlo model in regional flood frequency analysis Water Resour Res 43 W08403 10.1029/2006WR005525 (Pubitemid 47509785)
    • (2007) Water Resources Research , vol.43 , Issue.8
    • Ribatet, M.1    Sauquet, E.2    Gresillon, J.M.3    Ouarda, T.B.M.J.4
  • 33
    • 67649854447 scopus 로고    scopus 로고
    • Combining site and regional flood information using a Bayesian Monte Carlo approach
    • 10.1029/2008WR007173
    • T. Micevski G. Kuczera 2009 Combining site and regional flood information using a Bayesian Monte Carlo approach Water Resour Res 45 W04405 10.1029/2008WR007173
    • (2009) Water Resour Res , vol.45 , pp. 04405
    • Micevski, T.1    Kuczera, G.2
  • 34
    • 40849146963 scopus 로고    scopus 로고
    • Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling
    • 10.1016/j.advwatres.2007.12.003
    • R. S. Blasone J. A. Vrugt H. Madsen, et al. 2008 Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling Adv Water Resour 31 4 630 648 10.1016/j.advwatres.2007.12.003
    • (2008) Adv Water Resour , vol.31 , Issue.4 , pp. 630-648
    • Blasone, R.S.1    Vrugt, J.A.2    Madsen, H.3
  • 35
    • 63549093042 scopus 로고    scopus 로고
    • Markov chain Monte Carlo (MCMC) sampling methods to determine optimal models, model resolution and model choice for earth science problems
    • 10.1016/j.marpetgeo.2009.01.003
    • K. Gallagher K. Charvin S. Nielsen, et al. 2009 Markov chain Monte Carlo (MCMC) sampling methods to determine optimal models, model resolution and model choice for earth science problems Mar Petrol Geol 26 4 525 535 10.1016/j.marpetgeo.2009.01.003
    • (2009) Mar Petrol Geol , vol.26 , Issue.4 , pp. 525-535
    • Gallagher, K.1    Charvin, K.2    Nielsen, S.3
  • 36
    • 0038563932 scopus 로고    scopus 로고
    • An adaptive Metropolis algorithm
    • H. Haario E. Saksman J. Tamminem 2001 An adaptive metropolis algorithm Bernoulli 7 2 223 242 10.2307/3318737 0989.65004 1828504 (Pubitemid 33793059)
    • (2001) Bernoulli , vol.7 , Issue.2 , pp. 223-242
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 37
    • 33750082644 scopus 로고    scopus 로고
    • DRAM: Efficient adaptive MCMC
    • DOI 10.1007/s11222-006-9438-0
    • H. Haario M. Laine A. Mira, et al. 2006 DRAM: Efficient adaptive MCMC Stat Comput 16 4 339 354 10.1007/s11222-006-9438-0 2297535 (Pubitemid 44581755)
    • (2006) Statistics and Computing , vol.16 , Issue.4 , pp. 339-354
    • Haario, H.1    Laine, M.2    Mira, A.3    Saksman, E.4
  • 38
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • 10.1214/ss/1177011136
    • A. Gelman D. B. Rubin 1992 Inference from iterative simulation using multiple sequences Stat Sci 7 4 457 511 10.1214/ss/1177011136
    • (1992) Stat Sci , vol.7 , Issue.4 , pp. 457-511
    • Gelman, A.1    Rubin, D.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.