메뉴 건너뛰기




Volumn 6, Issue 5, 2011, Pages 975-981

Application of artificial neural networks to predict compressive strength of high strength concrete

Author keywords

Artificial neural networks (ANNS); High strength concrete (HSC); Multilayer feedforward neural networks (MFNNS); Relative percentage error (RPE); Root mean square error (RMSE)

Indexed keywords


EID: 79956213944     PISSN: 19921950     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (67)

References (22)
  • 1
    • 10444286741 scopus 로고    scopus 로고
    • Concrete breakout strength of single anchors in tension using neural networks
    • Ashour AF, Alqedra MA (2005). Concrete breakout strength of single anchors in tension using neural networks. J. Adv. Eng. Software, 36: 87-97.
    • (2005) J. Adv. Eng. Software , vol.36 , pp. 87-97
    • Ashour, A.F.1    Alqedra, M.A.2
  • 2
    • 0141892727 scopus 로고    scopus 로고
    • Using neural networks to predict workability of concrete incorporating metakaolin and fly ash
    • Bai J, Wild S, Ware JA, Sabir BB (2003). Using neural networks to predict workability of concrete incorporating metakaolin and fly ash. J. Adv. Eng. Software, 34: 663-669.
    • (2003) J. Adv. Eng. Software , vol.34 , pp. 663-669
    • Bai, J.1    Wild, S.2    Ware, J.A.3    Sabir, B.B.4
  • 3
    • 0035480545 scopus 로고    scopus 로고
    • Neural networks for predicting properties of concretes with admixtures
    • Dias WPS, Pooliyadda SP (2001). Neural networks for predicting properties of concretes with admixtures. J. Constr. Build. Mater., 15:371-379.
    • (2001) J. Constr. Build. Mater , vol.15 , pp. 371-379
    • Dias, W.P.S.1    Pooliyadda, S.P.2
  • 4
    • 0028743227 scopus 로고
    • Measurement and prediction of the strength of rubberized concrete
    • Eldin NN, Senouci AB (1994). Measurement and prediction of the strength of rubberized concrete. J. Cem. Concrete Comp., 16: 287-298.
    • (1994) J. Cem. Concrete Comp , vol.16 , pp. 287-298
    • Eldin, N.N.1    Senouci, A.B.2
  • 5
    • 0034242043 scopus 로고    scopus 로고
    • Prediction of compressive strength of concrete by neural networks
    • Guang NH, Zong WJ (2000). Prediction of compressive strength of concrete by neural networks. J. Cem. Concrete Res., 30: 1245-1250.
    • (2000) J. Cem. Concrete Res , vol.30 , pp. 1245-1250
    • Guang, N.H.1    Zong, W.J.2
  • 6
    • 0037370619 scopus 로고    scopus 로고
    • Neural networks applications in concrete structures
    • Hadi M (2003). Neural networks applications in concrete structures. J. Comp. Struct., 81: 373-381.
    • (2003) J. Comp. Struct , vol.81 , pp. 373-381
    • Hadi, M.1
  • 8
    • 16244385254 scopus 로고    scopus 로고
    • Application of artificial neural networks to determine concrete compressive strength based on non-destructive tests
    • Hola J, Schabowicz K (2005). Application of artificial neural networks to determine concrete compressive strength based on non-destructive tests. J. Civil Eng. Manage., 11(1): 23-32.
    • (2005) J. Civil Eng. Manage , vol.11 , Issue.1 , pp. 23-32
    • Hola, J.1    Schabowicz, K.2
  • 9
    • 13444278672 scopus 로고    scopus 로고
    • New technique of nondestructive assessment of concrete strength using artificial intelligence
    • Hola J, Schabowica K (2004). New technique of nondestructive assessment of concrete strength using artificial intelligence. J. NDT&E Int., 38: 251-259.
    • (2004) J. NDT&E Int , vol.38 , pp. 251-259
    • Hola, J.1    Schabowica, K.2
  • 10
    • 0034292699 scopus 로고    scopus 로고
    • The application of ANNs in certain materials analysis problems
    • Kasperkiewicz J (2000). The application of ANNs in certain materials analysis problems. J. Mater. Process. Tech., 106: 74-79.
    • (2000) J. Mater. Process. Tech , vol.106 , pp. 74-79
    • Kasperkiewicz, J.1
  • 12
    • 2642516306 scopus 로고    scopus 로고
    • Application of neural networks for concrete strength
    • Kim JI, Kim DK, Feng MQ, Yazdani F (2004). Application of neural networks for concrete strength. J. Mater. Civil Eng., 16(3): 257-264.
    • (2004) J. Mater. Civil Eng , vol.16 , Issue.3 , pp. 257-264
    • Kim, J.I.1    Kim, D.K.2    Feng, M.Q.3    Yazdani, F.4
  • 13
    • 0034895715 scopus 로고    scopus 로고
    • Neural network based prediction of ground surface settlements due to Tunneling
    • Kim CY, Bae GJ, Hong SW, Park CH, Moon HK, Shin HS (2001). Neural network based prediction of ground surface settlements due to Tunneling. J. Comp. Geotech., 28: 517-547.
    • (2001) J. Comp. Geotech , vol.28 , pp. 517-547
    • Kim, C.Y.1    Bae, G.J.2    Hong, S.W.3    Park, C.H.4    Moon, H.K.5    Shin, H.S.6
  • 14
    • 0031084643 scopus 로고    scopus 로고
    • Concrete strength prediction by means of neural network
    • Lai S, Sera M (1997).Concrete strength prediction by means of neural network. J. Constr. Build. Mater., 11(2): 93-98.
    • (1997) J. Constr. Build. Mater , vol.11 , Issue.2 , pp. 93-98
    • Lai, S.1    Sera, M.2
  • 15
    • 0037653583 scopus 로고    scopus 로고
    • Prediction of concrete strength using artificial neural networks
    • Lee SC (2003). Prediction of concrete strength using artificial neural networks. J. Eng. Struct., 25: 849-857.
    • (2003) J. Eng. Struct , vol.25 , pp. 849-857
    • Lee, S.C.1
  • 16
    • 16544375206 scopus 로고    scopus 로고
    • Predicting the shear strength of reinforced concrete beams using artificial neural networks
    • Mansour MY, Dicleli M, Lee YJ, Zhang J (2004). Predicting the shear strength of reinforced concrete beams using artificial neural networks. J. Eng. Struct,. 26: 781-799.
    • (2004) J. Eng. Struct , vol.26 , pp. 781-799
    • Mansour, M.Y.1    Dicleli, M.2    Lee, Y.J.3    Zhang, J.4
  • 17
    • 35648977118 scopus 로고    scopus 로고
    • An optimal architecture of artificial neural network for predicting compressive strength of concrete
    • Noorzaei J, Hakim SJS, Jaafar MS, Abang AAA, Thanon WAM (2007). An optimal architecture of artificial neural network for predicting compressive strength of concrete. J. Indian Concrete, 81(8): 17-24.
    • (2007) J. Indian Concrete , vol.81 , Issue.8 , pp. 17-24
    • Noorzaei, J.1    Hakim, S.J.S.2    Jaafar, M.S.3    Abang, A.A.A.4    Thanon, W.A.M.5
  • 18
    • 0030369601 scopus 로고    scopus 로고
    • Strength characteristics modeling of lateritic soils using adaptive neural networks
    • Okine NOA, Fekpel ESK (1996). Strength characteristics modeling of lateritic soils using adaptive neural networks. J. Constr. Build. Mater., 10(8): 577-582.
    • (1996) J. Constr. Build. Mater , vol.10 , Issue.8 , pp. 577-582
    • Okine, N.O.A.1    Fekpel, E.S.K.2
  • 19
    • 33646926510 scopus 로고    scopus 로고
    • Predicting the compressive strength and slump of high strength concrete using neural network
    • Oztas A, Pala M, Ozbay E, Kanca E, Caglar N, Bhatti MA (2005). Predicting the compressive strength and slump of high strength concrete using neural network. J. Constr. Build. Mater., 20(9): 769-775.
    • (2005) J. Constr. Build. Mater , vol.20 , Issue.9 , pp. 769-775
    • Oztas, A.1    Pala, M.2    Ozbay, E.3    Kanca, E.4    Caglar, N.5    Bhatti, M.A.6
  • 20
    • 33748333230 scopus 로고    scopus 로고
    • Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks
    • Pala M, Ozbay E, Oztas A, Yuce MI (2005). Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks. J. Constr. Build. Mater., 21: 384-394.
    • (2005) J. Constr. Build. Mater , vol.21 , pp. 384-394
    • Pala, M.1    Ozbay, E.2    Oztas, A.3    Yuce, M.I.4
  • 21
    • 0032295215 scopus 로고    scopus 로고
    • Modeling of strength of HPC using ANN
    • Yeh IC (1998). Modeling of strength of HPC using ANN. Cem. Concrete Res. J., 28(12): 1797-1808.
    • (1998) Cem. Concrete Res. J , vol.28 , Issue.12 , pp. 1797-1808
    • Yeh, I.C.1
  • 22
    • 0040446481 scopus 로고
    • Building an expert system for debugging FEM input data with artificial neural networks
    • Yeh YC, Kuo YH, Hsu, DS (1992). Building an expert system for debugging FEM input data with artificial neural networks. J. Expert Syst. Appl., 5: 59-70.
    • (1992) J. Expert Syst. Appl , vol.5 , pp. 59-70
    • Yeh, Y.C.1    Kuo, Y.H.2    Hsu, D.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.