메뉴 건너뛰기




Volumn 38, Issue 4, 2005, Pages 251-259

New technique of nondestructive assessment of concrete strength using artificial intelligence

Author keywords

Artificial neural networks; Compression strength of concrete; Concrete; Nondestructive testing

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPRESSIVE STRENGTH; CURVE FITTING; MATHEMATICAL MODELS; NEURAL NETWORKS; NONDESTRUCTIVE EXAMINATION; PARAMETER ESTIMATION;

EID: 13444278672     PISSN: 09638695     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ndteint.2004.08.002     Document Type: Article
Times cited : (64)

References (30)
  • 5
    • 13444312863 scopus 로고
    • ISO/DIS 8046 International Organization for Standardization. 1 Rue de Varembe, Case Postal 56
    • ISO/DIS 8046. Concrete hardened - determination of pullout strength. International Organization for Standardization. 1 Rue de Varembe, Case Postal 56; 1982.
    • (1982) Concrete Hardened - Determination of Pullout Strength
  • 7
    • 13444289258 scopus 로고
    • Particularities of combined non-destructive methods development in Romania
    • Tatarska Lomnica
    • Facaoaru I. Particularities of combined non-destructive methods development in Romania. Nedestuktivne skusanie v stavebnictvie 79, Tatarska Lomnica; 1979.
    • (1979) Nedestuktivne Skusanie V Stavebnictvie , vol.79
    • Facaoaru, I.1
  • 10
    • 0035044111 scopus 로고    scopus 로고
    • Neural networks in civil engineering: 1989-2000
    • H. Adeli Neural networks in civil engineering: 1989-2000 Comput Aided Civil Infrastruct Eng 16 2001 126 142
    • (2001) Comput Aided Civil Infrastruct Eng , vol.16 , pp. 126-142
    • Adeli, H.1
  • 11
    • 0001637736 scopus 로고
    • Neural networks in structural analysis and design - An overview
    • P. Hajela, and L. Berke Neural networks in structural analysis and design - an overview Comput Syst Eng 3 1992 525 538
    • (1992) Comput Syst Eng , vol.3 , pp. 525-538
    • Hajela, P.1    Berke, L.2
  • 13
    • 13444264580 scopus 로고    scopus 로고
    • Prediction of strength for concrete specimens using artificial neural networks
    • Civil-Comp Press Edinburgh
    • A. Kaveh, and A. Khalegi Prediction of strength for concrete specimens using artificial neural networks Advances in engineering computational technology 1998 Civil-Comp Press Edinburgh p. 165-71
    • (1998) Advances in Engineering Computational Technology
    • Kaveh, A.1    Khalegi, A.2
  • 14
    • 0029278014 scopus 로고
    • Quantitative nondestructive evaluation with ultrasonic method using neural networks and computational mechanics
    • A. Oishi, K. Yamada, S. Yoshimura, and G. Yagawa Quantitative nondestructive evaluation with ultrasonic method using neural networks and computational mechanics Comput Mech 15 1995 521 533
    • (1995) Comput Mech , vol.15 , pp. 521-533
    • Oishi, A.1    Yamada, K.2    Yoshimura, S.3    Yagawa, G.4
  • 15
    • 13444277457 scopus 로고
    • Neural network for predicting concrete strength
    • W. Trefor, A. Khajuria, and P. Balaguru Neural network for predicting concrete strength Comput Civil Eng 1992 1082 1088
    • (1992) Comput Civil Eng , pp. 1082-1088
    • Trefor, W.1    Khajuria, A.2    Balaguru, P.3
  • 16
    • 0003295633 scopus 로고    scopus 로고
    • Neural networks in the analysis and design of structures
    • Springer New York
    • Z. Waszczyszyn Neural networks in the analysis and design of structures CISM courses and lectures no. 404 1999 Springer New York
    • (1999) CISM Courses and Lectures No. 404
    • Waszczyszyn, Z.1
  • 18
    • 0035441570 scopus 로고    scopus 로고
    • Neural networks in mechanics of structures and materials - New results and prospects of applications
    • Z. Waszczyszyn, and L. Ziemiański Neural networks in mechanics of structures and materials - new results and prospects of applications Comput Struct 79 2001 2261 2276
    • (2001) Comput Struct , vol.79 , pp. 2261-2276
    • Waszczyszyn, Z.1    Ziemiański, L.2
  • 19
    • 13444312985 scopus 로고    scopus 로고
    • Neural networks in structural engineering: Some recent result and prospects for applications
    • S. Valliappan N. Khalili Elsevier Amsterdam
    • Z. Waszczyszyn Neural networks in structural engineering: some recent result and prospects for applications S. Valliappan N. Khalili Computational mechanics for the new millenium 2001 Elsevier Amsterdam 1311 1320
    • (2001) Computational Mechanics for the New Millenium , pp. 1311-1320
    • Waszczyszyn, Z.1
  • 23
    • 13444284381 scopus 로고    scopus 로고
    • ASTM C 900-87 American Society for Testing and Materials, 1916 Race Street, Philadelphia, PA 19103, USA
    • ASTM C 900-87, Standard test method for pullout strength of hardened concrete. American Society for Testing and Materials, 1916 Race Street, Philadelphia, PA 19103, USA.
    • Standard Test Method for Pullout Strength of Hardened Concrete
  • 24
    • 0342771612 scopus 로고
    • Pull-out testing by LOK-test and CAPO-test with particular reference to the in-place concrete of the Great Belt Link
    • C.G. Petersen, and E. Poulsen Pull-out testing by LOK-test and CAPO-test with particular reference to the in-place concrete of the Great Belt Link Dansk Betoninstitut A/S, Birkerod 1993
    • (1993) Dansk Betoninstitut A/S, Birkerod
    • Petersen, C.G.1    Poulsen, E.2
  • 29
    • 0029391988 scopus 로고
    • HPC strength prediction using artificial neural network
    • J. Kasperkiewicz, J. Racz, and A. Dubrawski HPC strength prediction using artificial neural network J Comput Civil Eng 10 1995 279 283
    • (1995) J Comput Civil Eng , vol.10 , pp. 279-283
    • Kasperkiewicz, J.1    Racz, J.2    Dubrawski, A.3
  • 30
    • 0038076657 scopus 로고    scopus 로고
    • Neural network toolbox - For use with MATLAB
    • The Math Works Natick, MA
    • H. Demuth, and M. Beale Neural network toolbox - for use with MATLAB User's guide 1998 The Math Works Natick, MA
    • (1998) User's Guide
    • Demuth, H.1    Beale, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.