메뉴 건너뛰기




Volumn 55, Issue 9, 2011, Pages 2644-2651

Bayesian proportional hazards model for current status data with monotone splines

Author keywords

Current status data; Gibbs sampler; Monotone spline; Poisson distribution; The proportional hazards model

Indexed keywords

BAYESIAN APPROACHES; CUMULATIVE HAZARD FUNCTION; CURRENT STATUS; DATA AUGMENTATION; EPIDEMIOLOGICAL STUDIES; FINITE NUMBER; GIBBS SAMPLER; GIBBS SAMPLERS; HAZARD FUNCTION; LATENT VARIABLE; MAXIMUM LIKELIHOOD METHODS; MODELING FLEXIBILITY; MONOTONE SPLINE; ON CURRENTS; PARTIAL LIKELIHOODS; PROPORTIONAL HAZARDS MODEL; REGRESSION COEFFICIENT; SIMULATION STUDIES; THE PROPORTIONAL HAZARDS MODEL; UTERINE FIBROIDS;

EID: 79956141937     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2011.03.013     Document Type: Article
Times cited : (44)

References (19)
  • 2
    • 0016794660 scopus 로고
    • Partial likelihood
    • D. Cox Partial likelihood Biometrika 62 1975 269 276
    • (1975) Biometrika , vol.62 , pp. 269-276
    • Cox, D.1
  • 3
    • 0038312668 scopus 로고
    • Adaptive rejection Metropolis sampling within Gibbs sampling
    • W. Gilks, N. Best, and K. Tan Adaptive rejection Metropolis sampling within Gibbs sampling Applied Statistics 44 1995 455 472
    • (1995) Applied Statistics , vol.44 , pp. 455-472
    • Gilks, W.1    Best, N.2    Tan, K.3
  • 4
    • 0000324169 scopus 로고
    • Adaptive rejection sampling for Gibbs sampling
    • W. Gilks, and P. Wild Adaptive rejection sampling for Gibbs sampling Applied Statistics 41 1992 337 348
    • (1992) Applied Statistics , vol.41 , pp. 337-348
    • Gilks, W.1    Wild, P.2
  • 5
    • 72749125444 scopus 로고    scopus 로고
    • Tutorial on methods for interval-censored data and their implementation in R
    • G. Gmez, M. Calle, R. Oller, and K. Langohr Tutorial on methods for interval-censored data and their implementation in R Statistical Modelling 9 2009 259 297
    • (2009) Statistical Modelling , vol.9 , pp. 259-297
    • Gmez, G.1    Calle, M.2    Oller, R.3    Langohr, K.4
  • 7
    • 0242627500 scopus 로고    scopus 로고
    • BITE: A Bayesian intensity estimator
    • T. Hrknen BITE: a Bayesian intensity estimator Computational Statistics 18 2003 564 583
    • (2003) Computational Statistics , vol.18 , pp. 564-583
    • Hrknen, T.1
  • 9
    • 79956127482 scopus 로고    scopus 로고
    • SurvBayes: An introduction into the package
    • Henschel, V., Heiß, C., Mansmann, U., 2009b. survBayes: an introduction into the package. Comprehensive R Archive Network.
    • (2009) Comprehensive R Archive Network
    • Henschel, V.1
  • 10
    • 0030501199 scopus 로고    scopus 로고
    • Efficient estimation for the proportional hazards model with interval censoring
    • J. Huang Efficient estimation for the proportional hazards model with interval censoring Annals of Statistics 24 1996 540 568
    • (1996) Annals of Statistics , vol.24 , pp. 540-568
    • Huang, J.1
  • 12
    • 77950883215 scopus 로고    scopus 로고
    • Semiparametric probit model for case 2 interval-censored failure time data
    • X. Lin, and L. Wang Semiparametric probit model for case 2 interval-censored failure time data Statistics in Medicine 29 2010 972 981
    • (2010) Statistics in Medicine , vol.29 , pp. 972-981
    • Lin, X.1    Wang, L.2
  • 13
    • 42749093943 scopus 로고    scopus 로고
    • New statistical software for the proportional hazards model with current status data
    • S. Mongou-Tchokot, and J.S. Kim New statistical software for the proportional hazards model with current status data Computational Statistics and Data Analysis 52 2008 4272 4286
    • (2008) Computational Statistics and Data Analysis , vol.52 , pp. 4272-4286
    • Mongou-Tchokot, S.1    Kim, J.S.2
  • 14
    • 0033475250 scopus 로고    scopus 로고
    • Extending the iterative convex minorant algorithm to the Cox model for interval-censored data
    • W. Pan Extending the iterative convex minorant algorithm to the Cox model for interval-censored data Journal of Computational and Graphical Statistics 8 1999 109 120
    • (1999) Journal of Computational and Graphical Statistics , vol.8 , pp. 109-120
    • Pan, W.1
  • 15
    • 84972507631 scopus 로고
    • Monotone regression splines in action
    • J.O. Ramsay Monotone regression splines in action Statistical Science 3 1988 425 441
    • (1988) Statistical Science , vol.3 , pp. 425-441
    • Ramsay, J.O.1
  • 16
    • 0031638056 scopus 로고    scopus 로고
    • Generalized Additive Models for Current Status Data
    • S.C. Shiboski Generalized additive models for current status data Lifetime Data Analysis 4 1998 29 50 (Pubitemid 128480548)
    • (1998) Lifetime Data Analysis , vol.4 , Issue.1 , pp. 29-50
    • Shiboski, S.C.1
  • 18
    • 79956150357 scopus 로고    scopus 로고
    • Semiparametric Bayes proportional odds models for current status data with under-reporting
    • 10.1111/j.1541-0420.2010.01532.x
    • L. Wang, and D.B. Dunson Semiparametric Bayes proportional odds models for current status data with under-reporting Biometrics 2010 10.1111/j.1541-0420.2010.01532.x
    • (2010) Biometrics
    • Wang, L.1    Dunson, D.B.2
  • 19
    • 33646430322 scopus 로고    scopus 로고
    • Semiparametric additive risks model for interval-censored data
    • D. Zeng, J. Cai, and Y. Shen Semiparametric additive risks model for interval-censored data Statistica Sinica 16 2006 287 302 (Pubitemid 43681458)
    • (2006) Statistica Sinica , vol.16 , Issue.1 , pp. 287-302
    • Zeng, D.1    Cai, J.2    Shen, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.