메뉴 건너뛰기




Volumn 67, Issue 3, 2011, Pages 1111-1118

Semiparametric Bayes' Proportional Odds Models for Current Status Data with Underreporting

Author keywords

Cross sectional; Interval censored; Measurement error; Monotone splines; Proportional odds model; Survival analysis; Uterine fibroids

Indexed keywords

RISK PERCEPTION;

EID: 79956150357     PISSN: 0006341X     EISSN: 15410420     Source Type: Journal    
DOI: 10.1111/j.1541-0420.2010.01532.x     Document Type: Article
Times cited : (33)

References (37)
  • 1
    • 17444411959 scopus 로고    scopus 로고
    • Semiparametric proportional odds models for spatially correlated survival data
    • Banerjee, S. and Dey, D. K. (2005). Semiparametric proportional odds models for spatially correlated survival data. Lifetime Data Analysis 11, 175-191.
    • (2005) Lifetime Data Analysis , vol.11 , pp. 175-191
    • Banerjee, S.1    Dey, D.K.2
  • 2
    • 34247339211 scopus 로고    scopus 로고
    • Bayesian analysis of generalized odds-rate hazards models for survival data
    • Banerjee, T., Chen, M.-H., Dey, D. K., and Kim, S. (2007). Bayesian analysis of generalized odds-rate hazards models for survival data. Lifetime Data Analysis 13, 241-260.
    • (2007) Lifetime Data Analysis , vol.13 , pp. 241-260
    • Banerjee, T.1    Chen, M.-H.2    Dey, D.K.3    Kim, S.4
  • 3
    • 0008555752 scopus 로고    scopus 로고
    • Computationally simple accelerated failure time regression for interval censored data
    • Betensky, R. A., Rabinowitz, D., and Tsiatis, A. A. (2001). Computationally simple accelerated failure time regression for interval censored data. Biometrika 88, 703-711.
    • (2001) Biometrika , vol.88 , pp. 703-711
    • Betensky, R.A.1    Rabinowitz, D.2    Tsiatis, A.A.3
  • 4
    • 0042334736 scopus 로고    scopus 로고
    • Hazard regression for interval-censored data with penalized spline
    • Cai, T. and Betensky, R. A. (2003). Hazard regression for interval-censored data with penalized spline. Biometrics 59, 570-579.
    • (2003) Biometrics , vol.59 , pp. 570-579
    • Cai, T.1    Betensky, R.A.2
  • 5
    • 0034120304 scopus 로고    scopus 로고
    • Complications in pregnancy, labor, and delivery with uterine leiomyomas: A population-based study
    • Cornado, G. D., Marshall, L. M., and Schwartz, S. M. (2000). Complications in pregnancy, labor, and delivery with uterine leiomyomas: A population-based study. Obstetrics & Gynecology 95, 764-769.
    • (2000) Obstetrics & Gynecology , vol.95 , pp. 764-769
    • Cornado, G.D.1    Marshall, L.M.2    Schwartz, S.M.3
  • 7
    • 0036158310 scopus 로고    scopus 로고
    • Hysterectomy rates in the United States 1990-1997
    • Farquhar, C. M. and Steiner, C. A. (2002). Hysterectomy rates in the United States 1990-1997. Obstetrics & Gynecology 99, 229-234.
    • (2002) Obstetrics & Gynecology , vol.99 , pp. 229-234
    • Farquhar, C.M.1    Steiner, C.A.2
  • 9
    • 0000539315 scopus 로고
    • Bayesian model choice: Asymptotics and exact calculations (with discussion)
    • Gelfand, A. E. and Dey, D. K. (1994). Bayesian model choice: Asymptotics and exact calculations (with discussion). Journal of the Royal Statistical Society, Series B 56, 501-514.
    • (1994) Journal of the Royal Statistical Society, Series B , vol.56 , pp. 501-514
    • Gelfand, A.E.1    Dey, D.K.2
  • 10
    • 0000079228 scopus 로고
    • Model determination using predictive distributions with implementation via sampling-based methods
    • In, J. M. Bergernado, J. O. Berger, A. P. Dawid, and A. F. M. Smith (eds), New York: Oxford University Press.
    • Gelfand, A. E., Dey, D. K., and Chang, H. (1992). Model determination using predictive distributions with implementation via sampling-based methods. In Bayesian Statistics, J. M. Bergernado, J. O. Berger, A. P. Dawid, and A. F. M. Smith (eds), Volume 4, 147-168. New York: Oxford University Press.
    • (1992) Bayesian Statistics , vol.4 , pp. 147-168
    • Gelfand, A.E.1    Dey, D.K.2    Chang, H.3
  • 11
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science 7, 457-511.
    • (1992) Statistical Science , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.B.2
  • 12
    • 0001032163 scopus 로고
    • Evaluating the accuracy of sampling-based approaches to calculating posterior moments
    • In, J. M. Bergernado, J. O. Berger, A. P. Dawid, and A. F. M. Smith (eds), Oxford: Oxford University Press.
    • Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In Bayesian Statistics, J. M. Bergernado, J. O. Berger, A. P. Dawid, and A. F. M. Smith (eds), Volume 4, 169-194. Oxford: Oxford University Press.
    • (1992) Bayesian Statistics , vol.4 , pp. 169-194
    • Geweke, J.1
  • 13
    • 77956889087 scopus 로고
    • Reversible jump Markow chain Monte Carlo computation and Bayesian model determination
    • Green, P. J. (1995). Reversible jump Markow chain Monte Carlo computation and Bayesian model determination. Biometrika 82, 711-732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 14
    • 0027665595 scopus 로고
    • Regression analysis of current-status data: An application to breast-feeding
    • Grummer-Strawn, L. M. (1993). Regression analysis of current-status data: An application to breast-feeding. Journal of the American Statistical Association 88, 758-765.
    • (1993) Journal of the American Statistical Association , vol.88 , pp. 758-765
    • Grummer-Strawn, L.M.1
  • 15
    • 34247207069 scopus 로고    scopus 로고
    • Bayesian semiparametric proportional odds models
    • Hanson, T. and Yang, M. (2007). Bayesian semiparametric proportional odds models. Biometrics 63, 88-95.
    • (2007) Biometrics , vol.63 , pp. 88-95
    • Hanson, T.1    Yang, M.2
  • 16
    • 84867151416 scopus 로고    scopus 로고
    • Bayesian auxiliary variable models for binary and multinomial regression
    • Holmes, C. C. and Held, L. (2006). Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Analysis 1, 145-168.
    • (2006) Bayesian Analysis , vol.1 , pp. 145-168
    • Holmes, C.C.1    Held, L.2
  • 17
    • 0030501199 scopus 로고    scopus 로고
    • Efficient estimation for the proportional hazards model with interval censoring
    • Huang, J. (1996). Efficient estimation for the proportional hazards model with interval censoring. Annals of Statistics 24, 540-568.
    • (1996) Annals of Statistics , vol.24 , pp. 540-568
    • Huang, J.1
  • 18
    • 21744454088 scopus 로고    scopus 로고
    • Sieve estimation for the proportional odds model with interval-censoring
    • Huang, J. and Rossini, J. A. (1997). Sieve estimation for the proportional odds model with interval-censoring. Journal of the American Statistical Association 92, 960-967.
    • (1997) Journal of the American Statistical Association , vol.92 , pp. 960-967
    • Huang, J.1    Rossini, J.A.2
  • 21
    • 0000070644 scopus 로고    scopus 로고
    • Additive hazards regression with current status data
    • Lin, D. Y., Oakes, D., and Ying, Z. L. (1998). Additive hazards regression with current status data. Biometrika 85, 289-298.
    • (1998) Biometrika , vol.85 , pp. 289-298
    • Lin, D.Y.1    Oakes, D.2    Ying, Z.L.3
  • 22
    • 77950883215 scopus 로고    scopus 로고
    • A semiparametric probit model for case 2 interval-censored failure time data
    • Lin, X. and Wang, L. (2010). A semiparametric probit model for case 2 interval-censored failure time data. Statistics in Medicine 29, 972-981.
    • (2010) Statistics in Medicine , vol.29 , pp. 972-981
    • Lin, X.1    Wang, L.2
  • 23
    • 30344452322 scopus 로고    scopus 로고
    • Penalized log-likelihood estimation for partly linear transformation models with current status data
    • Ma, S. G. and Kosorok, M. (2005). Penalized log-likelihood estimation for partly linear transformation models with current status data. The Annals of Statistics 33, 2256-2290.
    • (2005) The Annals of Statistics , vol.33 , pp. 2256-2290
    • Ma, S.G.1    Kosorok, M.2
  • 24
    • 0041482985 scopus 로고    scopus 로고
    • Efficient estimation in additive hazards regression with current status data
    • Martinussen, T. and Scheike, T. H. (2002). Efficient estimation in additive hazards regression with current status data. Biometrika 89, 649-658.
    • (2002) Biometrika , vol.89 , pp. 649-658
    • Martinussen, T.1    Scheike, T.H.2
  • 25
    • 42749093943 scopus 로고    scopus 로고
    • New statistical software for the proportional hazards model with current status data
    • Mongoue-Tchokote, S. and Kim, J. S. (2008). New statistical software for the proportional hazards model with current status data. Computational Statistics & Data Aanalysis 52, 4272-4286.
    • (2008) Computational Statistics & Data Aanalysis , vol.52 , pp. 4272-4286
    • Mongoue-Tchokote, S.1    Kim, J.S.2
  • 26
    • 0033930810 scopus 로고    scopus 로고
    • Using conditional logistic regression to fit proportional odds models to interval censored data
    • Rabinowitz, D., Betensky, R. A., and Tsiatis, A. A. (2000). Using conditional logistic regression to fit proportional odds models to interval censored data. Biometrics 56, 511-518.
    • (2000) Biometrics , vol.56 , pp. 511-518
    • Rabinowitz, D.1    Betensky, R.A.2    Tsiatis, A.A.3
  • 27
    • 84972507631 scopus 로고
    • Monotone regression splines in action
    • Ramsay, J. O. (1988). Monotone regression splines in action. Statistical Science 3, 425-441.
    • (1988) Statistical Science , vol.3 , pp. 425-441
    • Ramsay, J.O.1
  • 28
    • 0030539071 scopus 로고    scopus 로고
    • A semiparametric proportional odds regression model for the analysis of current status data
    • Rossini, A. and Tsiatis, A. A. (1996). A semiparametric proportional odds regression model for the analysis of current status data. Journal of the American Statistical Association 91, 713-721.
    • (1996) Journal of the American Statistical Association , vol.91 , pp. 713-721
    • Rossini, A.1    Tsiatis, A.A.2
  • 29
    • 0000585433 scopus 로고    scopus 로고
    • Proportional odds regression and sieve maximum likelihood estimation
    • Shen, X. T. (1998). Proportional odds regression and sieve maximum likelihood estimation. Biometrika 85, 165-177.
    • (1998) Biometrika , vol.85 , pp. 165-177
    • Shen, X.T.1
  • 31
    • 0031638056 scopus 로고    scopus 로고
    • Generalized additive models for current status data
    • Shiboski, S. C. (1998). Generalized additive models for current status data. Lifetime Data Analysis 4, 29-50.
    • (1998) Lifetime Data Analysis , vol.4 , pp. 29-50
    • Shiboski, S.C.1
  • 32
    • 0033006795 scopus 로고    scopus 로고
    • Bayesian analysis and model selection for interval-censored survival data
    • Sinha, D., Chen, M.-H., and Ghosh, S. K. (1999). Bayesian analysis and model selection for interval-censored survival data. Biometrics 55, 585-590.
    • (1999) Biometrics , vol.55 , pp. 585-590
    • Sinha, D.1    Chen, M.-H.2    Ghosh, S.K.3
  • 33
    • 0000824232 scopus 로고    scopus 로고
    • Nonparametric regression using Bayesian variable selection
    • Smith, M. and Kohn, R. (1996). Nonparametric regression using Bayesian variable selection. Journal of Econometrics 75, 317-343.
    • (1996) Journal of Econometrics , vol.75 , pp. 317-343
    • Smith, M.1    Kohn, R.2
  • 34
    • 33745584341 scopus 로고    scopus 로고
    • On the accelerated failure time model for current status and interval censored data
    • Tian, L. and Cai, T. X. (2006). On the accelerated failure time model for current status and interval censored data. Biometrika 93, 329-342.
    • (2006) Biometrika , vol.93 , pp. 329-342
    • Tian, L.1    Cai, T.X.2
  • 36
    • 34547837458 scopus 로고    scopus 로고
    • Maximum likelihood estimation in semiparametric regression models with censored data
    • Zeng, D. and Lin, D. Y. (2007). Maximum likelihood estimation in semiparametric regression models with censored data. Journal of the Royal Statistical Society, Series B 69, 507-564.
    • (2007) Journal of the Royal Statistical Society, Series B , vol.69 , pp. 507-564
    • Zeng, D.1    Lin, D.Y.2
  • 37
    • 33646430322 scopus 로고    scopus 로고
    • Semiparametric additive risks model for interval-censored data
    • Zeng, D., Cai, J., and Shen, Y. (2006). Semiparametric additive risks model for interval-censored data. Statistica Sinica 16, 287-302.
    • (2006) Statistica Sinica , vol.16 , pp. 287-302
    • Zeng, D.1    Cai, J.2    Shen, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.