메뉴 건너뛰기




Volumn 11, Issue 3, 2011, Pages 253-277

Robust statistical modelling using the multivariate skew t distribution with complete and incomplete data

Author keywords

data augmentation; MCECM algorithm; missing at random; MST model; multiple imputation; multivariate truncated t distribution

Indexed keywords


EID: 79956107866     PISSN: 1471082X     EISSN: 14770342     Source Type: Journal    
DOI: 10.1177/1471082X1001100305     Document Type: Article
Times cited : (14)

References (41)
  • 1
    • 0000254441 scopus 로고
    • Maximum likelihood estimates for a multivariate normal distribution when some observations are missing
    • Anderson TW (1957) Maximum likelihood estimates for a multivariate normal distribution when some observations are missing. Journal of the American Statistical Association, 52, 200-3.
    • (1957) Journal of the American Statistical Association , vol.52 , pp. 200-203
    • Anderson, T.W.1
  • 2
    • 0037900005 scopus 로고    scopus 로고
    • Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution
    • Azzalini A and Capitaino A 2003) Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution. Journal of the Royal Statistical Society, Series B, 65, 367-89.
    • (2003) Journal of the Royal Statistical Society, Series B , vol.65 , pp. 367-389
    • Azzalini, A.1    Capitaino, A.2
  • 3
    • 41849143354 scopus 로고    scopus 로고
    • Robust likelihood methods based on the skew-t and related distributions
    • Azzalini A and Genton MG 2008) Robust likelihood methods based on the skew-t and related distributions. International Statistical Review, 76, 106-29.
    • (2008) International Statistical Review , vol.76 , pp. 106-129
    • Azzalini, A.1    Genton, M.G.2
  • 5
    • 33847083094 scopus 로고    scopus 로고
    • A comparison of Bayesian and likelihood-based methods for fitting multilevel models (with discussion)
    • Browne WJ and Draper D 2006) A comparison of Bayesian and likelihood-based methods for fitting multilevel models (with discussion). Bayesian Analysis, 1, 473-514.
    • (2006) Bayesian Analysis , vol.1 , pp. 473-514
    • Browne, W.J.1    Draper, D.2
  • 8
    • 26444433586 scopus 로고
    • Bayesian statistical inference for psychological research
    • Edwards WH, Lindman H and Savage LJ 1963) Bayesian statistical inference for psychological research. Psychological Review, 70, 193-242.
    • (1963) Psychological Review , vol.70 , pp. 193-242
    • Edwards, W.H.1    Lindman, H.2    Savage, L.J.3
  • 12
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings WK 1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 13
    • 0000408215 scopus 로고
    • Estimation of parameters in the multivariate normal distribution with missing observations
    • Hocking RR and Smith WB 1968) Estimation of parameters in the multivariate normal distribution with missing observations. Journal of the American Statistical Association, 63, 159-73.
    • (1968) Journal of the American Statistical Association , vol.63 , pp. 159-173
    • Hocking, R.R.1    Smith, W.B.2
  • 16
    • 0020333131 scopus 로고
    • Random effects models for longitudinal data
    • Laird NM and Ware JH 1982) Random effects models for longitudinal data. Biometrics, 38, 963-74.
    • (1982) Biometrics , vol.38 , pp. 963-974
    • Laird, N.M.1    Ware, J.H.2
  • 18
    • 56349112368 scopus 로고    scopus 로고
    • Maximum likelihood estimation for multivariate skew normal mixture models
    • Lin TI 2009) Maximum likelihood estimation for multivariate skew normal mixture models. Journal of Multivariate Analysis, 100, 257-65.
    • (2009) Journal of Multivariate Analysis , vol.100 , pp. 257-265
    • Lin, T.I.1
  • 19
    • 77749280346 scopus 로고    scopus 로고
    • Robust mixture modeling using multivariate skew t distributions
    • Lin TI 2010) Robust mixture modeling using multivariate skew t distributions. Statistics and Computing, 20, 343-56.
    • (2010) Statistics and Computing , vol.20 , pp. 343-356
    • Lin, T.I.1
  • 20
    • 70249127181 scopus 로고    scopus 로고
    • Analysis of multivariate skew normal models with incomplete data
    • Lin TI, Ho HJ and Chen CL 2009) Analysis of multivariate skew normal models with incomplete data. Journal of Multivariate Analysis, 100, 2337-51.
    • (2009) Journal of Multivariate Analysis , vol.100 , pp. 2337-2351
    • Lin, T.I.1    Ho, H.J.2    Chen, C.L.3
  • 21
    • 79956090346 scopus 로고    scopus 로고
    • Supervised learning of multivariate skew normal mixture models with missing information
    • Lin TC and Lin TI 2010) Supervised learning of multivariate skew normal mixture models with missing information. Computational Statistics, 25, 183-201.
    • (2010) Computational Statistics , vol.25 , pp. 183-201
    • Lin, T.C.1    Lin, T.I.2
  • 22
    • 0000106418 scopus 로고
    • Missing data imputation using the multivariate t distribution
    • Liu CH 1995) Missing data imputation using the multivariate t distribution. Journal of Multivariate Analysis, 53, 139-58.
    • (1995) Journal of Multivariate Analysis , vol.53 , pp. 139-158
    • Liu, C.H.1
  • 23
    • 0001349994 scopus 로고    scopus 로고
    • Efficient ML estimation of the multivariate normal distribution from incomplete data
    • Liu CH 1999) Efficient ML estimation of the multivariate normal distribution from incomplete data. Journal of Multivariate Analysis, 69, 206-17.
    • (1999) Journal of Multivariate Analysis , vol.69 , pp. 206-217
    • Liu, C.H.1
  • 24
    • 0002864973 scopus 로고
    • ML estimation of the t distribution using EM and its extensions, ECM and ECME
    • Liu CH and Rubin DB 1995) ML estimation of the t distribution using EM and its extensions, ECM and ECME. Statistica Sinica, 5, 19-39.
    • (1995) Statistica Sinica , vol.5 , pp. 19-39
    • Liu, C.H.1    Rubin, D.B.2
  • 26
    • 0000251971 scopus 로고
    • Maximum likelihood estimation via the ECM algorithm: a general framework
    • Meng XL and Rubin DB 1993) Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika, 80, 267-78.
    • (1993) Biometrika , vol.80 , pp. 267-278
    • Meng, X.L.1    Rubin, D.B.2
  • 29
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin DB 1976) Inference and missing data. Biometrika, 63, 581-92.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 31
    • 0242595939 scopus 로고    scopus 로고
    • A new class of multivariate skew distributions with application to Bayesian regression models
    • Sahu SK, Dey DK and Branco MD 2003) A new class of multivariate skew distributions with application to Bayesian regression models. The Canadian Journal of Statistics, 31, 129-50.
    • (2003) The Canadian Journal of Statistics , vol.31 , pp. 129-150
    • Sahu, S.K.1    Dey, D.K.2    Branco, M.D.3
  • 34
    • 84907319426 scopus 로고
    • Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions
    • Self SG and Liang KY 1987) Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. Journal of the American Statistical Association, 82, 605-10.
    • (1987) Journal of the American Statistical Association , vol.82 , pp. 605-610
    • Self, S.G.1    Liang, K.Y.2
  • 35
    • 0022758596 scopus 로고
    • Assessing influence in multiple linear regression with incomplete data
    • Shih WJ and Weisberg S 1986) Assessing influence in multiple linear regression with incomplete data. Technometrics, 28, 231-39.
    • (1986) Technometrics , vol.28 , pp. 231-239
    • Shih, W.J.1    Weisberg, S.2
  • 36
    • 36249013251 scopus 로고    scopus 로고
    • Maximum likelihood inference in robust linear mixed-effects models using multivariate t distributions
    • Song PXK, Zhang P and Qu A 2007) Maximum likelihood inference in robust linear mixed-effects models using multivariate t distributions. Statistica Sinica, 17, 929-43.
    • (2007) Statistica Sinica , vol.17 , pp. 929-943
    • Song, P.X.K.1    Zhang, P.2    Qu, A.3
  • 37
    • 0028641810 scopus 로고
    • Variance components testing in the longitudinal mixed effects model
    • Stram DO and Lee JW 1994) Variance components testing in the longitudinal mixed effects model. Biometrics, 50, 1171-77.
    • (1994) Biometrics , vol.50 , pp. 1171-1177
    • Stram, D.O.1    Lee, J.W.2
  • 38
    • 0029157341 scopus 로고
    • Correction to 'Variance components testing in the longitudinal mixed effects model
    • Stram DO and Lee JW 1995 Correction to 'Variance components testing in the longitudinal mixed effects model'. Biometrics, 51, 1196.
    • (1995) Biometrics , vol.51 , pp. 1196
    • Stram, D.O.1    Lee, J.W.2
  • 40
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation (with discussion)
    • Tanner MA and Wong WH 1987) The calculation of posterior distributions by data augmentation (with discussion). Journal of the American Statistical Association, 82, 528-50.
    • (1987) Journal of the American Statistical Association , vol.82 , pp. 528-550
    • Tanner, M.A.1    Wong, W.H.2
  • 41
    • 84950432017 scopus 로고
    • A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms
    • Wei GCG and Tanner MA (1990) A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms. Journal of the American Statistical Association, 85, 699-704.
    • (1990) Journal of the American Statistical Association , vol.85 , pp. 699-704
    • Wei, G.C.G.1    Tanner, M.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.