-
4
-
-
0012099291
-
The effect of dispersal on population growth with stage-structure
-
J. Cui, L. Chen, and W. Wang The effect of dispersal on population growth with stage-structure Comput. Math. Appl. 39 2000 91 102
-
(2000)
Comput. Math. Appl.
, vol.39
, pp. 91-102
-
-
Cui, J.1
Chen, L.2
Wang, W.3
-
6
-
-
18844464485
-
Destabilizing effect of cannibalism on a structured predator-prey system
-
DOI 10.1016/S0025-5564(98)10051-2, PII S0025556498100512
-
K.G. Magnusson Destabilizing effect of cannibalism on a structured predator prey system Math. Biosci. 155 1999 61 75 (Pubitemid 29062106)
-
(1999)
Mathematical Biosciences
, vol.155
, Issue.1
, pp. 61-75
-
-
Magnusson, K.G.1
-
9
-
-
16244417218
-
Optimal strategy for structured model of fishing problem
-
DOI 10.1016/j.crvi.2004.10.016, PII S1631069104002872
-
M. Jerry, and N. Rassi Optimal strategy for structured model of fishing problem C. R. Biologies 328 2005 351 356 (Pubitemid 40450725)
-
(2005)
Comptes Rendus - Biologies
, vol.328
, Issue.4
, pp. 351-356
-
-
Jerry, M.1
Raissi, N.2
-
10
-
-
43049146573
-
Stability and Hopf bifurcation in a ratio-dependent predator-prey system with stage structure
-
DOI 10.1016/j.chaos.2007.01.019, PII S0960077907000203
-
R. Xu, and Z. Ma Stability and Hopf bifurcation in a ratio-dependent predator prey system with stage structure Chaos Soliton. Fract. 38 2008 669 684 (Pubitemid 351633018)
-
(2008)
Chaos, Solitons and Fractals
, vol.38
, Issue.3
, pp. 669-684
-
-
Xu, R.1
Ma, Z.2
-
11
-
-
7544221039
-
Global stability of a Lotka Volterra type predator prey model with stage structure and time delay
-
R. Xu, M.A.J. Chaplain, and F.A. Davidson Global stability of a Lotka Volterra type predator prey model with stage structure and time delay Appl. Math. Comput. 159 2004 863 880
-
(2004)
Appl. Math. Comput.
, vol.159
, pp. 863-880
-
-
Xu, R.1
Chaplain, M.A.J.2
Davidson, F.A.3
-
12
-
-
4243129226
-
Dynamic complexities in a single-species discrete population model with stage structure and birth pulses
-
S. Gao, and L. Chen Dynamic complexities in a single-species discrete population model with stage structure and birth pulses Chaos Soliton. Fract. 23 2005 519 527
-
(2005)
Chaos Soliton. Fract.
, vol.23
, pp. 519-527
-
-
Gao, S.1
Chen, L.2
-
13
-
-
48049088346
-
Hopf bifurcation and global stability for a delayed predator prey system with stage structure for predator
-
S. Gao, L. Chen, and Z. Teng Hopf bifurcation and global stability for a delayed predator prey system with stage structure for predator Appl. Math. Comput. 202 2008 721 729
-
(2008)
Appl. Math. Comput.
, vol.202
, pp. 721-729
-
-
Gao, S.1
Chen, L.2
Teng, Z.3
-
14
-
-
79956067133
-
Bioeconomic modelling of a prey predator system using differential algebraic equations
-
T.K. Kar, and K. Chakraborty Bioeconomic modelling of a prey predator system using differential algebraic equations Int. J. Eng. Sci. Technol. 2 1 2010 3 34
-
(2010)
Int. J. Eng. Sci. Technol.
, vol.2
, Issue.1
, pp. 3-34
-
-
Kar, T.K.1
Chakraborty, K.2
-
15
-
-
33845634818
-
Modelling and analysis of a prey-predator system with stage-structure and harvesting
-
DOI 10.1016/j.nonrwa.2006.01.004, PII S1468121806000071
-
T.K. Kar, and U.K. Pahari Modelling and analysis of a prey-predator system with stage-structure and harvesting Nonlinear Anal.: Real World Appl. 8 2007 601 609 (Pubitemid 44940915)
-
(2007)
Nonlinear Analysis: Real World Applications
, vol.8
, Issue.2
, pp. 601-609
-
-
Kar, T.K.1
Pahari, U.K.2
-
16
-
-
0029513825
-
Local bifurcations and feasibility regions in differential-algebraic systems
-
V. Venkatasubramanian, H. Schattler, and J. Zaborszky Local bifurcations and feasibility regions in differential-algebraic systems IEEE Trans. Autom. Control 40 12 1995 1992 2013
-
(1995)
IEEE Trans. Autom. Control
, vol.40
, Issue.12
, pp. 1992-2013
-
-
Venkatasubramanian, V.1
Schattler, H.2
Zaborszky, J.3
-
17
-
-
70449650806
-
Optimal control of growth coefficient on a steady-state population model
-
W. Ding, H. Finotti, S. Lenhart, Y. Louc, and Q. Yed Optimal control of growth coefficient on a steady-state population model Nonlinear Anal.: Real World Appl. 11 2010 688 704
-
(2010)
Nonlinear Anal.: Real World Appl.
, vol.11
, pp. 688-704
-
-
Ding, W.1
Finotti, H.2
Lenhart, S.3
Louc, Y.4
Yed, Q.5
-
18
-
-
0000275657
-
A numerical method foe solving parabolic equations with opposite orientations
-
W. Hackbush A numerical method foe solving parabolic equations with opposite orientations Computing 20 3 1978 229 240
-
(1978)
Computing
, vol.20
, Issue.3
, pp. 229-240
-
-
Hackbush, W.1
-
19
-
-
0035888649
-
Permanence and stability of a stage-structured predator-prey model
-
DOI 10.1006/jmaa.2001.7543
-
W. Wang, G. Mulone, F. Salemi, and V. Salone Permanence and stability of a stage-structured predator prey model J. Math. Anal. Appl. 262 2001 499 528 (Pubitemid 33082609)
-
(2001)
Journal of Mathematical Analysis and Applications
, vol.262
, Issue.2
, pp. 499-528
-
-
Wang, W.1
Mulone, G.2
Salemi, F.3
Salone, V.4
-
20
-
-
0025132577
-
A time-delay model of single-species growth with stage structure
-
DOI 10.1016/0025-5564(90)90019-U
-
W.G. Aiello, and H.I. Freedman A time-delay model of single-species growth with stage structure Math. Biosci. 101 1990 139 153 (Pubitemid 20357965)
-
(1990)
Mathematical Biosciences
, vol.101
, Issue.2
, pp. 139-153
-
-
Aiello, W.G.1
Freedman, H.I.2
|