-
1
-
-
0002455609
-
Nonoccurance of stability switching in systems with discrete delays
-
Freedman H.I., and Gopalsamy K. Nonoccurance of stability switching in systems with discrete delays. Can. Math. Bull. 31 (1988) 52-58
-
(1988)
Can. Math. Bull.
, vol.31
, pp. 52-58
-
-
Freedman, H.I.1
Gopalsamy, K.2
-
2
-
-
0142031033
-
Positive periodic solutions of a class of delay differential system with feedback control
-
Huo H.F., and Li W.T. Positive periodic solutions of a class of delay differential system with feedback control. Appl. Math. Comput. 148 1 (2004) 35-46
-
(2004)
Appl. Math. Comput.
, vol.148
, Issue.1
, pp. 35-46
-
-
Huo, H.F.1
Li, W.T.2
-
4
-
-
0037110188
-
Extinction and permanence in nonautonomous competitive system with stage structure
-
Liu S., Chen L., and Liu Z. Extinction and permanence in nonautonomous competitive system with stage structure. J. Math. Anal. Appl. 274 (2002) 67-684
-
(2002)
J. Math. Anal. Appl.
, vol.274
, pp. 67-684
-
-
Liu, S.1
Chen, L.2
Liu, Z.3
-
5
-
-
0001249569
-
Time delay versus stability in population models with two or trophic levels
-
May R.M. Time delay versus stability in population models with two or trophic levels. Ecology 54 (1973) 315-325
-
(1973)
Ecology
, vol.54
, pp. 315-325
-
-
May, R.M.1
-
6
-
-
0041511814
-
Existence and global stability of positive periodic solutions of a predator-prey system with delays
-
Wang L., and Li W. Existence and global stability of positive periodic solutions of a predator-prey system with delays. Appl. Math. Comput. 146 (2003) 167-185
-
(2003)
Appl. Math. Comput.
, vol.146
, pp. 167-185
-
-
Wang, L.1
Li, W.2
-
7
-
-
4344597711
-
Periodic solutions of a periodic Lotka-Volterra system with delays
-
Huo H., and Li W. Periodic solutions of a periodic Lotka-Volterra system with delays. Appl. Math. Comput. 156 (2004) 787-803
-
(2004)
Appl. Math. Comput.
, vol.156
, pp. 787-803
-
-
Huo, H.1
Li, W.2
-
9
-
-
0000236923
-
Stability of predation models with time delays
-
Ma Z. Stability of predation models with time delays. Appl. Anal. 22 (1986) 169-192
-
(1986)
Appl. Anal.
, vol.22
, pp. 169-192
-
-
Ma, Z.1
-
11
-
-
0025132577
-
A time-delay model of single-species growth with stage structure
-
Aiello W.G., and Freedman H.I. A time-delay model of single-species growth with stage structure. Math. Biosci. 101 (1990) 139-153
-
(1990)
Math. Biosci.
, vol.101
, pp. 139-153
-
-
Aiello, W.G.1
Freedman, H.I.2
-
12
-
-
0001687872
-
Analysis of a model representing stage-structured population growth with state-dependent time delay
-
Aiello W.G., Freedman H.I., and Wu J. Analysis of a model representing stage-structured population growth with state-dependent time delay. SIAM J. Appl. Math. 3 (1992) 855-869
-
(1992)
SIAM J. Appl. Math.
, vol.3
, pp. 855-869
-
-
Aiello, W.G.1
Freedman, H.I.2
Wu, J.3
-
13
-
-
28444483535
-
Global stability of a stage-structured predator-prey model with prey dispersal
-
Xu R., Chaplain M.A.J., and Davidson F.A. Global stability of a stage-structured predator-prey model with prey dispersal. Appl. Math. Comput. 171 (2005) 293-314
-
(2005)
Appl. Math. Comput.
, vol.171
, pp. 293-314
-
-
Xu, R.1
Chaplain, M.A.J.2
Davidson, F.A.3
-
14
-
-
0000664623
-
persistence and global asymptotic stability of single species dispersal models with stage structure
-
Freedman H.I., and Wu J. persistence and global asymptotic stability of single species dispersal models with stage structure. Quart. Appl. Math. 2 (1991) 351-371
-
(1991)
Quart. Appl. Math.
, vol.2
, pp. 351-371
-
-
Freedman, H.I.1
Wu, J.2
-
15
-
-
0036883834
-
Extinction and permanence in competitive stage structured system with time-delays
-
Liu S., Chen L., and Luo G. Extinction and permanence in competitive stage structured system with time-delays. Nonlinear Anal. Th. Mech. Appl. 51 (2002) 1347-1361
-
(2002)
Nonlinear Anal. Th. Mech. Appl.
, vol.51
, pp. 1347-1361
-
-
Liu, S.1
Chen, L.2
Luo, G.3
-
16
-
-
7544221039
-
Global stability of a Lotka-Volterra type predator-prey model with stage structure and time delay
-
Xu R., Chaplain M.A.J., and Davidson F.A. Global stability of a Lotka-Volterra type predator-prey model with stage structure and time delay. Appl. Math. Comput. 159 (2004) 863-880
-
(2004)
Appl. Math. Comput.
, vol.159
, pp. 863-880
-
-
Xu, R.1
Chaplain, M.A.J.2
Davidson, F.A.3
-
17
-
-
44949273582
-
Global stability of Volterra models with time delay
-
Wang W., Ma Z., and Freedman H.I. Global stability of Volterra models with time delay. J. Math. Anal. Appl. 160 (1991) 51-59
-
(1991)
J. Math. Anal. Appl.
, vol.160
, pp. 51-59
-
-
Wang, W.1
Ma, Z.2
Freedman, H.I.3
-
18
-
-
0142243570
-
Dynamical behavior for a stage-structured SIR infection disease model
-
Xiao Y., Chen L., and van den Bosch F. Dynamical behavior for a stage-structured SIR infection disease model. Nonlinear Anal.: RWA 3 (2002) 175-190
-
(2002)
Nonlinear Anal.: RWA
, vol.3
, pp. 175-190
-
-
Xiao, Y.1
Chen, L.2
van den Bosch, F.3
-
19
-
-
0030620620
-
Density dependence and age structure: nonlinear dynamics and population behavior
-
Hinggins K., Hastings A., and Botsford L. Density dependence and age structure: nonlinear dynamics and population behavior. Am. Nat. 149 (1997) 247-269
-
(1997)
Am. Nat.
, vol.149
, pp. 247-269
-
-
Hinggins, K.1
Hastings, A.2
Botsford, L.3
-
20
-
-
0031124171
-
A predator-prey system with stage stricture for predator
-
Wang W., and Chen L. A predator-prey system with stage stricture for predator. Comput. Math. Appl. 33 (1997) 83-92
-
(1997)
Comput. Math. Appl.
, vol.33
, pp. 83-92
-
-
Wang, W.1
Chen, L.2
-
21
-
-
17444380577
-
Global dynamics of a population model with stage structure a predator-prey system with stage structure for predator
-
Chen L., Ruan S., and Zhu J. (Eds), World Scientific
-
Wang W. Global dynamics of a population model with stage structure a predator-prey system with stage structure for predator. In: Chen L., Ruan S., and Zhu J. (Eds). Advanced Topics in Biomathematics (1998), World Scientific 253-257
-
(1998)
Advanced Topics in Biomathematics
, pp. 253-257
-
-
Wang, W.1
-
22
-
-
0033668215
-
The stage-structured predator-prey model and optimal harvesting policy
-
Zhang X., Chen L., and Neumann A.U. The stage-structured predator-prey model and optimal harvesting policy. Math. Biosci. 168 (1974) 201-210
-
(1974)
Math. Biosci.
, vol.168
, pp. 201-210
-
-
Zhang, X.1
Chen, L.2
Neumann, A.U.3
-
23
-
-
0021046625
-
The systematic formulation of tractable single species population models incorporating age structure
-
Gurney W.S.C., Nisbet R.M., and Lawton J.H. The systematic formulation of tractable single species population models incorporating age structure. J. Animal Ecol. 52 (1983) 479-485
-
(1983)
J. Animal Ecol.
, vol.52
, pp. 479-485
-
-
Gurney, W.S.C.1
Nisbet, R.M.2
Lawton, J.H.3
-
24
-
-
0001687872
-
Analysis of a model representing stage-structured population growth with state-dependent time delay
-
Aiello W.G., Freedman H.I., and Wu J. Analysis of a model representing stage-structured population growth with state-dependent time delay. SIAM J. Appl. Math. 52 (1992) 855-869
-
(1992)
SIAM J. Appl. Math.
, vol.52
, pp. 855-869
-
-
Aiello, W.G.1
Freedman, H.I.2
Wu, J.3
-
25
-
-
0001352326
-
The trade-off between mutual interference and time lags in predator-prey systems
-
Freedman H.I., and Sree Hari Rao V. The trade-off between mutual interference and time lags in predator-prey systems. Bull. Math. Biol. 45 (1983) 991
-
(1983)
Bull. Math. Biol.
, vol.45
, pp. 991
-
-
Freedman, H.I.1
Sree Hari Rao, V.2
|