-
1
-
-
21544433483
-
-
apl APPLAB 0003-6951
-
C. Orme, M. D. Johnson, J. L. Sudijono, K. T. Leung, and B. G. Orr, Appl. Phys. Lett. 64, 860 (1994). apl APPLAB 0003-6951
-
(1994)
Appl. Phys. Lett.
, vol.64
, pp. 860
-
-
Orme, C.1
Johnson, M.D.2
Sudijono, J.L.3
Leung, K.T.4
Orr, B.G.5
-
3
-
-
4243979739
-
-
Following the letter, and, many linear and nonlinear continuum theories have been developed to model a large variety of growth processes. prl PRLTAO 0031-9007
-
Following the letter M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett. 56, 889 (1986), many linear and nonlinear continuum theories have been developed to model a large variety of growth processes. prl PRLTAO 0031-9007
-
(1986)
Phys. Rev. Lett.
, vol.56
, pp. 889
-
-
Kardar, M.1
Parisi, G.2
Zhang, Y.-C.3
-
5
-
-
0031097281
-
-
references therein. adADPHAH 0001-8732
-
J. Krug, Adv. Phys. 46, 139 (1997), and references therein. adp ADPHAH 0001-8732
-
(1997)
Adv. Phys.
, vol.46
, pp. 139
-
-
Krug, J.1
-
6
-
-
0012575045
-
-
references therein. prPRPLCM 0370-1573
-
T. J. Halpin-Healty and Y. C. Zhang, Phys. Rep. 254, 215 (1995), and references therein. prp PRPLCM 0370-1573
-
(1995)
Phys. Rep.
, vol.254
, pp. 215
-
-
Halpin-Healty, T.J.1
Zhang, Y.C.2
-
7
-
-
0035848252
-
-
A. Ballestad, B. J. Ruck, M. Adamcyk, T. Pinnington, and T. Tiedje, Phys. Rev. Lett. 86, 2377 (2001); prl PRLTAO 0031-9007
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 2377
-
-
Ballestad, A.1
Ruck, B.J.2
Adamcyk, M.3
Pinnington, T.4
Tiedje, T.5
-
8
-
-
2442658994
-
-
edited by R. Doremus, B. Roberts, and D. Turnbull (Wiley, New York)
-
F. C. Frank, in Growth and Perfection of Crystals, edited by R. Doremus, B. Roberts, and D. Turnbull (Wiley, New York, 1958), p. 511;
-
(1958)
Growth and Perfection of Crystals
, pp. 511
-
-
Frank, F.C.1
-
9
-
-
0001776828
-
-
jpi JPGCE8 1155-4304
-
J. Villain, J. Phys. I 1, 19 (1991); jpi JPGCE8 1155-4304
-
(1991)
J. Phys. i
, vol.1
, pp. 19
-
-
Villain, J.1
-
11
-
-
85006930451
-
-
Note
-
Yet in this case, instability of the growing surface may arise by the nonequilibrium contribution to the diffusion current due to the stochastic nature of the impinging flux. In the limit of ideal conserving MBE growth, surface diffusion provides the mechanism for describing roughening and scaling properties of the growth at a coarse-grained length scale.
-
-
-
-
12
-
-
3343020032
-
-
prl PRLTAO 0031-9007
-
M. D. Johnson, C. Orme, A. W. Hunt, D. Graff, J. L. Sudijono, L. M. Sander, and B. G. Orr, Phys. Rev. Lett. 72, 116 (1994). prl PRLTAO 0031-9007
-
(1994)
Phys. Rev. Lett.
, vol.72
, pp. 116
-
-
Johnson, M.D.1
Orme, C.2
Hunt, A.W.3
Graff, D.4
Sudijono, J.L.5
Sander, L.M.6
Orr, B.G.7
-
13
-
-
0032096694
-
-
sus SUSCAS 0039-6028
-
P. Tejedor, F. E. Allegretti, P. Smilauer, and B. A. Joyce, Surf. Sci. 407, 82 (1998). sus SUSCAS 0039-6028
-
(1998)
Surf. Sci.
, vol.407
, pp. 82
-
-
Tejedor, P.1
Allegretti, F.E.2
Smilauer, P.3
Joyce, B.A.4
-
15
-
-
85006958800
-
-
Note
-
Generically, the adatoms moving on the surface acquire a systematic drift perpendicular to the direction of step edges (uphill/downhill current) due to an asymmetric rate of attachment and detachment that can be accounted for by different mechanisms. 11 14 The resulting current can either stabilize or destabilize the surface that consequently flattens or roughens.
-
-
-
-
16
-
-
0000067621
-
-
ptr PTRMAD 0962-8428
-
W. K. Barton, N. Cabrera, and F. C. Frank, Philos. Trans. R. Soc. London, Ser. A 243, 299 (1951). ptr PTRMAD 0962-8428
-
(1951)
Philos. Trans. R. Soc. London, Ser. A
, vol.243
, pp. 299
-
-
Barton, W.K.1
Cabrera, N.2
Frank, F.C.3
-
19
-
-
0014464613
-
-
R. L. Schwoebel, 40, 614 (1969). jap JAPIAU 0021-8979
-
R. L. Schwoebel, 40, 614 (1969). jap JAPIAU 0021-8979
-
-
-
-
25
-
-
0001544011
-
-
prb PRBMDO 0163-1829
-
J. M. Moison, C. Guille, F. Houzay, F. Barthe, and M. van Rompay, Phys. Rev. B 40, 6149 (1989). prb PRBMDO 0163-1829
-
(1989)
Phys. Rev. B
, vol.40
, pp. 6149
-
-
Moison, J.M.1
Guille, C.2
Houzay, F.3
Barthe, F.4
Van Rompay, M.5
|