메뉴 건너뛰기




Volumn 50, Issue 9, 2011, Pages 5815-5823

Determination of parachor of various compounds using an artificial neural network-group contribution method

Author keywords

[No Author keywords available]

Indexed keywords

ABSOLUTE AVERAGE DEVIATION; ARTIFICIAL NEURAL NETWORK; GROUP CONTRIBUTION METHOD; GROUP CONTRIBUTIONS; PREDICTIVE TOOLS; SQUARED CORRELATION COEFFICIENTS; STATISTICAL PARAMETERS;

EID: 79955526954     PISSN: 08885885     EISSN: 15205045     Source Type: Journal    
DOI: 10.1021/ie102464t     Document Type: Article
Times cited : (41)

References (48)
  • 1
    • 47349125844 scopus 로고    scopus 로고
    • Einstein, 'parachor' and molecular volume: Some history and a suggestion
    • Balasubrahmanyam, S. N. Einstein, "parachor" and molecular volume: Some history and a suggestion Curr. Sci. India 2008, 94, 1650-1658 (Pubitemid 351994102)
    • (2008) Current Science , vol.94 , Issue.12 , pp. 1650-1658
    • Balasubrahmanyam, S.N.1
  • 4
    • 0002314930 scopus 로고
    • Relation between surface tension and density
    • Macleod, D. B. Relation between surface tension and density Trans. Faraday Soc. 1923, 19, 38-42
    • (1923) Trans. Faraday Soc. , vol.19 , pp. 38-42
    • MacLeod, D.B.1
  • 5
    • 37049149785 scopus 로고
    • A Relation between surface tension, density, and chemical composition
    • Sugden, S. A Relation between surface tension, density, and chemical composition J. Am. Chem. Soc. 1924, 125, 1177-1189
    • (1924) J. Am. Chem. Soc. , vol.125 , pp. 1177-1189
    • Sugden, S.1
  • 7
    • 33947350466 scopus 로고
    • Atomic radii from parachor data and from electron diffraction data
    • Bayliss, S. Atomic radii from parachor data and from electron diffraction data J. Am. Chem. Soc. 1937, 59, 444-447
    • (1937) J. Am. Chem. Soc. , vol.59 , pp. 444-447
    • Bayliss, S.1
  • 8
    • 0029479131 scopus 로고
    • Parachors based on modern physics and their uses in IFT prediction of reservoir fluids
    • Dallas, TX,; SPE Paper No. 30785
    • Schechter, D. S.; Guo, B. Parachors based on modern physics and their uses in IFT prediction of reservoir fluids. In SPE Proceedings of the Annual Conference, Dallas, TX, 1995; SPE Paper No. 30785.
    • (1995) SPE Proceedings of the Annual Conference
    • Schechter, D.S.1    Guo, B.2
  • 9
    • 79955593197 scopus 로고
    • Calculation of surface tensions, 3: Calculation of surface tension parachor values
    • Baker, O.; Swerdloff, W. Calculation of surface tensions, 3: Calculation of surface tension parachor values Oil Gas J. 1955, 53, 87
    • (1955) Oil Gas J. , vol.53 , pp. 87
    • Baker, O.1    Swerdloff, W.2
  • 10
    • 0025473117 scopus 로고
    • Calculation of parachors for compositional simulation, an update
    • Fanchi, J. R. Calculation of parachors for compositional simulation, an update SPE Reservoir Eng. 1990, August) 433-436
    • (1990) SPE Reservoir Eng. , Issue.AUG. , pp. 433-436
    • Fanchi, J.R.1
  • 11
    • 79955543726 scopus 로고
    • The parachor of organic compounds
    • Quayle, R. The parachor of organic compounds Chem. Rev. 1953, 53439-53589
    • (1953) Chem. Rev. , pp. 53439-53589
    • Quayle, R.1
  • 12
    • 79955610427 scopus 로고    scopus 로고
    • QSPR Approach for Determination of Parachor of Non-Electrolyte Organic Compounds, accepted manuscript
    • Gharagheizi, F.; Eslamimanesh, A.; Mohammadi, A. H.; Richon, D. QSPR Approach for Determination of Parachor of Non-Electrolyte Organic Compounds, accepted manuscript, Chem. Eng. Sci. 2011.
    • (2011) Chem. Eng. Sci.
    • Gharagheizi, F.1    Eslamimanesh, A.2    Mohammadi, A.H.3    Richon, D.4
  • 13
    • 79955543549 scopus 로고    scopus 로고
    • Project 801, Public Release Documentation; Design Institute for Physical Properties (DIPPR), American Institute of Chemical Engineers (AIChE): New York
    • Project 801, Evaluated Process Design Data, Public Release Documentation; Design Institute for Physical Properties (DIPPR), American Institute of Chemical Engineers (AIChE): New York, 2006.
    • (2006) Evaluated Process Design Data
  • 14
    • 77958020996 scopus 로고    scopus 로고
    • Prediction of Henry's law constant of organic compounds in water from a new group-contribution-based model
    • Gharagheizi, F.; Abbasi, R.; Tirandazi, B. Prediction of Henry's law constant of organic compounds in water from a new group-contribution-based model Ind. Eng. Chem. Res. 2010, 49, 10149-10152
    • (2010) Ind. Eng. Chem. Res. , vol.49 , pp. 10149-10152
    • Gharagheizi, F.1    Abbasi, R.2    Tirandazi, B.3
  • 15
    • 78650130863 scopus 로고    scopus 로고
    • Artificial neural network modeling of solubilities of 21 commonly used industrial solid compounds in supercritical carbon dioxide
    • Gharagheizi, F.; Eslamimanesh, A.; Mohammadi, A. H.; Richon, D. Artificial neural network modeling of solubilities of 21 commonly used industrial solid compounds in supercritical carbon dioxide Ind. Eng. Chem. Res. 2011, 50, 221-226
    • (2011) Ind. Eng. Chem. Res. , vol.50 , pp. 221-226
    • Gharagheizi, F.1    Eslamimanesh, A.2    Mohammadi, A.H.3    Richon, D.4
  • 16
    • 79954608677 scopus 로고    scopus 로고
    • Representation/prediction of solubilities of pure compounds in water using artificial neural network-group contribution method
    • DOI: 10.1021/je101061t
    • Gharagheizi, F.; Eslamimanesh, A.; Mohammadi, A. H.; Richon, D. Representation/prediction of solubilities of pure compounds in water using artificial neural network-group contribution method. J. Chem. Eng. Data 2011, DOI: 10.1021/je101061t.
    • (2011) J. Chem. Eng. Data
    • Gharagheizi, F.1    Eslamimanesh, A.2    Mohammadi, A.H.3    Richon, D.4
  • 17
    • 0037199062 scopus 로고    scopus 로고
    • Modeling of thermodynamic properties using neural networks: Application to refrigerants
    • DOI 10.1016/S0378-3812(01)00801-9, PII S0378381201008019
    • Chouai, A.; Laugier, S.; Richon, D. Modeling of thermodynamic properties using neural networks: Application to refrigerants Fluid Phase Equilib. 2002, 199, 53-62 (Pubitemid 34621375)
    • (2002) Fluid Phase Equilibria , vol.199 , Issue.1-2 , pp. 53-62
    • Chouai, A.1    Laugier, S.2    Richon, D.3
  • 18
    • 33748196548 scopus 로고    scopus 로고
    • Enhancement of the extended corresponding states techniques for thermodynamic modeling. I. Pure fluids
    • DOI 10.1016/j.ijrefrig.2006.01.008, PII S0140700706000089
    • Piazza, L.; Scalabrin, G.; Marchi, P.; Richon, D. Enhancement of the extended corresponding states techniques for thermodynamic modelling. I. Pure fluids Int. J. Refrig. 2006, 29, 1182-1194 (Pubitemid 44313994)
    • (2006) International Journal of Refrigeration , vol.29 , Issue.7 , pp. 1182-1194
    • Piazza, L.1    Scalabrin, G.2    Marchi, P.3    Richon, D.4
  • 19
    • 33748191245 scopus 로고    scopus 로고
    • Enhancement of the extended corresponding states techniques for thermodynamic modeling. II. Mixtures
    • DOI 10.1016/j.ijrefrig.2006.01.010, PII S0140700706000090
    • Scalabrin, G.; Marchi, P.; Bettio, L.; Richon, D. Enhancement of the extended corresponding states techniques for thermodynamic modelling. II. Mixtures Int. J. Refrig. 2006, 29, 1195-1207 (Pubitemid 44313995)
    • (2006) International Journal of Refrigeration , vol.29 , Issue.7 , pp. 1195-1207
    • Scalabrin, G.1    Marchi, P.2    Bettio, L.3    Richon, D.4
  • 20
    • 37349044609 scopus 로고    scopus 로고
    • Predicting the hydrate stability zones of natural gases using artificial neural networks
    • DOI 10.2516/ogst:2007048
    • Chapoy, A.; Mohammadi, A. H.; Richon, D. Predicting the hydrate stability zones of natural gases using Artificial Neural Networks Oil Gas Sci. Technol.-Rev. IFP 2007, 62, 701-706 (Pubitemid 350285564)
    • (2007) Oil and Gas Science and Technology , vol.62 , Issue.5 , pp. 701-706
    • Chapoy, A.1    Mohammadi, A.H.2    Richon, D.3
  • 21
    • 77950627492 scopus 로고    scopus 로고
    • Hydrate phase equilibria for hydrogen + water and hydrogen + tetrahydrofuran + water systems: Predictions of dissociation conditions using an artificial neural network algorithm
    • Mohammadi, A. H.; Richon, D. Hydrate phase equilibria for hydrogen + water and hydrogen + tetrahydrofuran + water systems: Predictions of dissociation conditions using an artificial neural network algorithm Chem. Eng. Sci. 2010, 65, 3352-3355
    • (2010) Chem. Eng. Sci. , vol.65 , pp. 3352-3355
    • Mohammadi, A.H.1    Richon, D.2
  • 22
    • 56749130739 scopus 로고    scopus 로고
    • Estimating sulfur content of hydrogen sulfide at elevated temperatures and pressures using an artificial neural network algorithm
    • Mohammadi, A. H.; Richon, D. Estimating sulfur content of hydrogen sulfide at elevated temperatures and pressures using an artificial neural network algorithm Ind. Eng. Chem. Res. 2008, 47, 8499-8504
    • (2008) Ind. Eng. Chem. Res. , vol.47 , pp. 8499-8504
    • Mohammadi, A.H.1    Richon, D.2
  • 23
    • 49249083725 scopus 로고    scopus 로고
    • A mathematical model based on artificial neural network technique for estimating liquid water-hydrate equilibrium of water-hydrocarbon system
    • Mohammadi, A. H.; Richon, D. A mathematical model based on artificial neural network technique for estimating liquid water-hydrate equilibrium of water-hydrocarbon system Ind. Eng. Chem. Res. 2008, 47, 4966-4970
    • (2008) Ind. Eng. Chem. Res. , vol.47 , pp. 4966-4970
    • Mohammadi, A.H.1    Richon, D.2
  • 24
    • 44349122317 scopus 로고    scopus 로고
    • Determination of critical properties and acentric factors of petroleum fractions using artificial neural networks
    • DOI 10.1021/ie0712378
    • Mohammadi, A. H.; Afzal, W.; Richon, D. Determination of critical properties and acentric factors of petroleum fractions using artificial neural networks Ind. Eng. Chem. Res. 2008, 47, 3225-3232 (Pubitemid 351747440)
    • (2008) Industrial and Engineering Chemistry Research , vol.47 , Issue.9 , pp. 3225-3232
    • Mohammadi, A.H.1    Afzal, W.2    Richon, D.3
  • 25
    • 33847622042 scopus 로고    scopus 로고
    • Use of artificial neural networks for estimating water content of natural gases
    • DOI 10.1021/ie060494u
    • Mohammadi, A. H.; Richon, D. Use of artificial neural networks for estimating water content of natural gases Ind. Eng. Chem. Res. 2007, 46, 1431-1438 (Pubitemid 46353321)
    • (2007) Industrial and Engineering Chemistry Research , vol.46 , Issue.4 , pp. 1431-1438
    • Mohammadi, A.H.1    Richon, D.2
  • 26
    • 77957335222 scopus 로고    scopus 로고
    • Determining phase diagrams of tetrahydrofuran + methane, carbon dioxide or nitrogen clathrate hydrates using an artificial neural network algorithm
    • Mohammadi, A. H.; Martínez-López, J. F.; Richon, D. Determining phase diagrams of tetrahydrofuran + methane, carbon dioxide or nitrogen clathrate hydrates using an artificial neural network algorithm Chem. Eng. Sci. 2010, 65, 6059-6063
    • (2010) Chem. Eng. Sci. , vol.65 , pp. 6059-6063
    • Mohammadi, A.H.1    Martínez-López, J.F.2    Richon, D.3
  • 27
    • 74349126098 scopus 로고    scopus 로고
    • Extension of an Artificial Neural Network algorithm for estimating sulfur content of sour gases at elevated temperatures and pressures
    • Mehrpooya, M.; Mohammadi, A. H.; Richon, D. Extension of an Artificial Neural Network algorithm for estimating sulfur content of sour gases at elevated temperatures and pressures Ind. Eng. Chem. Res. 2010, 49, 439-442
    • (2010) Ind. Eng. Chem. Res. , vol.49 , pp. 439-442
    • Mehrpooya, M.1    Mohammadi, A.H.2    Richon, D.3
  • 28
    • 77953232183 scopus 로고    scopus 로고
    • Use of an artificial neural network algorithm to predict hydrate dissociation conditions for hydrogen + water and hydrogen + tetra- n -butyl ammonium bromide + water systems
    • Mohammadi, A. H.; Belandria, V.; Richon, D. Use of an artificial neural network algorithm to predict hydrate dissociation conditions for hydrogen + water and hydrogen + tetra- n -butyl ammonium bromide + water systems Chem. Eng. Sci. 2010, 65, 4302-4305
    • (2010) Chem. Eng. Sci. , vol.65 , pp. 4302-4305
    • Mohammadi, A.H.1    Belandria, V.2    Richon, D.3
  • 29
    • 69249213956 scopus 로고    scopus 로고
    • A new group contribution-based method for estimation of lower flammability limit of pure compounds
    • Gharagheizi, F. A new group contribution-based method for estimation of lower flammability limit of pure compounds J. Hazard Mater. 2009, 170, 595-604
    • (2009) J. Hazard Mater. , vol.170 , pp. 595-604
    • Gharagheizi, F.1
  • 30
    • 68849090799 scopus 로고    scopus 로고
    • New Neural Network Group Contribution model for estimation of lower flammability limit temperature of pure compounds
    • Gharagheizi, F. New Neural Network Group Contribution model for estimation of lower flammability limit temperature of pure compounds Ind. Eng. Chem. Res. 2009, 48, 7406-7416
    • (2009) Ind. Eng. Chem. Res. , vol.48 , pp. 7406-7416
    • Gharagheizi, F.1
  • 31
    • 67949088286 scopus 로고    scopus 로고
    • Estimation of molecular diffusivity of pure chemicals in water: A quantitative structure-property relationship study
    • Gharagheizi, F.; Sattari, M. Estimation of molecular diffusivity of pure chemicals in water: A quantitative structure-property relationship study SAR QSAR Environ. Res. 2009, 20, 267-285
    • (2009) SAR QSAR Environ. Res. , vol.20 , pp. 267-285
    • Gharagheizi, F.1    Sattari, M.2
  • 32
    • 67649216406 scopus 로고    scopus 로고
    • Prediction of standard enthalpy of formation of pure compounds using molecular structure
    • Gharagheizi, F. Prediction of standard enthalpy of formation of pure compounds using molecular structure Aust. J. Chem. 2009, 62, 376-381
    • (2009) Aust. J. Chem. , vol.62 , pp. 376-381
    • Gharagheizi, F.1
  • 33
    • 61549105859 scopus 로고    scopus 로고
    • Estimation of aniline point temperature of pure hydrocarbons: A Quantitative Structure-Property Relationship approach
    • Gharagheizi, F.; Tirandazi, B.; Barzin, R. Estimation of aniline point temperature of pure hydrocarbons: A Quantitative Structure-Property Relationship approach Ind. Eng. Chem. Res. 2009, 48, 1678-1682
    • (2009) Ind. Eng. Chem. Res. , vol.48 , pp. 1678-1682
    • Gharagheizi, F.1    Tirandazi, B.2    Barzin, R.3
  • 34
    • 60549103767 scopus 로고    scopus 로고
    • Prediction of some important physical properties of sulfur compounds using QSPR models
    • Gharagheizi, F.; Mehrpooya, M. Prediction of some important physical properties of sulfur compounds using QSPR models Mol. Diversity 2008, 12, 143-155
    • (2008) Mol. Diversity , vol.12 , pp. 143-155
    • Gharagheizi, F.1    Mehrpooya, M.2
  • 35
    • 46149093912 scopus 로고    scopus 로고
    • Prediction of Molecular Diffusivity of Pure Components into Air: A QSPR Approach
    • Sattari, M.; Gharagheizi, F. Prediction of Molecular Diffusivity of Pure Components into Air: A QSPR Approach Chemosphere 2008, 72, 1298-1302
    • (2008) Chemosphere , vol.72 , pp. 1298-1302
    • Sattari, M.1    Gharagheizi, F.2
  • 36
    • 54049139304 scopus 로고    scopus 로고
    • A new neural network-group contribution method for estimation of flash point
    • Gharagheizi, F.; Alamdari, R. F.; Angaji, M. T. A new neural network-group contribution method for estimation of flash point Energy Fuels 2008, 22, 1628-1635
    • (2008) Energy Fuels , vol.22 , pp. 1628-1635
    • Gharagheizi, F.1    Alamdari, R.F.2    Angaji, M.T.3
  • 37
    • 53849109008 scopus 로고    scopus 로고
    • Prediction of Watson Characterization Factor of Hydrocarbon Compounds from Their Molecular Properties
    • Gharagheizi, F.; Fazeli, A. Prediction of Watson Characterization Factor of Hydrocarbon Compounds from Their Molecular Properties QSAR Comb. Sci. 2008, 27, 758-767
    • (2008) QSAR Comb. Sci. , vol.27 , pp. 758-767
    • Gharagheizi, F.1    Fazeli, A.2
  • 38
    • 38149048424 scopus 로고    scopus 로고
    • A molecular-based model for prediction of solubility of C60 fullerene in various solvents
    • Gharagheizi, F.; Alamdari, R. F. A molecular-based model for prediction of solubility of C60 fullerene in various solvents Fullerenes, Nanotubes, Carbon, Nanostruct. 2008, 16, 40-57
    • (2008) Fullerenes, Nanotubes, Carbon, Nanostruct. , vol.16 , pp. 40-57
    • Gharagheizi, F.1    Alamdari, R.F.2
  • 39
    • 35348997170 scopus 로고    scopus 로고
    • A New Neural Network Quantitative Structure-Property Relationship for prediction of (Lower Critical Solution Temperature) of polymer solutions
    • Article No. 114
    • Gharagheizi, F. A New Neural Network Quantitative Structure-Property Relationship for prediction of (Lower Critical Solution Temperature) of polymer solutions. e-Polym. 2007, Article No. 114.
    • (2007) E-Polym.
    • Gharagheizi, F.1
  • 40
    • 53849129396 scopus 로고    scopus 로고
    • QSPR studies for solubility parameter by means of genetic algorithm-based multivariate linear regression and generalized regression neural network
    • Gharagheizi, F. QSPR studies for solubility parameter by means of genetic algorithm-based multivariate linear regression and generalized regression neural network QSAR Comb. Sci. 2008, 27, 165-170
    • (2008) QSAR Comb. Sci. , vol.27 , pp. 165-170
    • Gharagheizi, F.1
  • 41
    • 77954796539 scopus 로고    scopus 로고
    • A chemical structure-based model for estimation of upper flammability limit of pure compounds
    • Gharagheizi, F. A chemical structure-based model for estimation of upper flammability limit of pure compounds Energy Fuels 2010, 27, 3867-3871
    • (2010) Energy Fuels , vol.27 , pp. 3867-3871
    • Gharagheizi, F.1
  • 43
    • 85167050826 scopus 로고    scopus 로고
    • A Molecular approach for prediction of sulfur compounds solubility parameters, phosphorus sulfur and silicon and related elements
    • Mehrpooya, M.; Gharagheizi, F. A Molecular approach for prediction of sulfur compounds solubility parameters, phosphorus sulfur and silicon and related elements Phosphorus Sulfur 2010, 185, 204-210
    • (2010) Phosphorus Sulfur , vol.185 , pp. 204-210
    • Mehrpooya, M.1    Gharagheizi, F.2
  • 44
    • 0034963531 scopus 로고    scopus 로고
    • Artificial neural networks in renewable energy systems applications: A review
    • DOI 10.1016/S1364-0321(01)00006-5, PII S1364032101000065
    • Kalogirou, S. A. Artificial Neural Networks in renewable energy systems applications: A review Renew. Sust. Energy Rev. 2001, 5, 373-401 (Pubitemid 32610523)
    • (2001) Renewable and Sustainable Energy Reviews , vol.5 , Issue.4 , pp. 373-401
    • Kalogirou, S.A.1
  • 46
    • 34248389661 scopus 로고    scopus 로고
    • QSPR analysis for intrinsic viscosity of polymer solutions by means of GA-MLR and RBFNN
    • Gharagheizi, F. QSPR analysis for intrinsic viscosity of polymer solutions by means of GA-MLR and RBFNN Comput. Mater. Sci. 2007, 40, 159
    • (2007) Comput. Mater. Sci. , vol.40 , pp. 159
    • Gharagheizi, F.1
  • 47
    • 79953780796 scopus 로고    scopus 로고
    • An accurate model for prediction of autoignition temperature of pure compounds
    • In press, DOI: 10.1016/j.jhazmat.2011.02.014
    • Gharagheizi, F.; An accurate model for prediction of autoignition temperature of pure compounds. J. Hazard. Mater. In press, DOI: 10.1016/j.jhazmat.2011.02.014.
    • J. Hazard. Mater.
    • Gharagheizi, F.1
  • 48
    • 79951500952 scopus 로고    scopus 로고
    • Prediction of lattice crystal energy using enthalpy of sublimation: A group contribution-based model
    • DOI: 10.1021/ie1001672j
    • Gharagheizi, F.; Sattari, M.; Tirandazi, B. Prediction of lattice crystal energy using enthalpy of sublimation: A group contribution-based model. Ind. Eng. Chem. Res. DOI: 10.1021/ie1001672j.
    • Ind. Eng. Chem. Res.
    • Gharagheizi, F.1    Sattari, M.2    Tirandazi, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.