메뉴 건너뛰기




Volumn 189, Issue 1-2, 2011, Pages 211-221

An accurate model for prediction of autoignition temperature of pure compounds

Author keywords

Artificial Neural Networks; Autoignition temperature (AIT); Combustion; Group contribution

Indexed keywords

ACCURATE PREDICTION; ARTIFICIAL NEURAL NETWORK; AUTOIGNITION TEMPERATURE; AUTOIGNITION TEMPERATURE (AIT); CHEMICAL FAMILY; EXPERIMENTAL VALUES; GROUP CONTRIBUTION; GROUP CONTRIBUTIONS; PREDICTIVE MODELS; PURE COMPOUNDS; ROOT MEAN SQUARE ERRORS; SQUARED CORRELATION COEFFICIENTS;

EID: 79953780796     PISSN: 03043894     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhazmat.2011.02.014     Document Type: Article
Times cited : (46)

References (43)
  • 1
    • 0142182837 scopus 로고    scopus 로고
    • The American Society for Testing and Materials, West Conshohocken, PA, ASTM International
    • ASTM International ASTM Standard Test Method E659-78 2000, The American Society for Testing and Materials, West Conshohocken, PA.
    • (2000) ASTM Standard Test Method E659-78
  • 2
    • 0028385001 scopus 로고
    • Quantitative structure-property relationships for auto-ignition temperatures of organic compounds
    • Suzuki T. Quantitative structure-property relationships for auto-ignition temperatures of organic compounds. Fire Mater. 1994, 18:81-88.
    • (1994) Fire Mater. , vol.18 , pp. 81-88
    • Suzuki, T.1
  • 3
    • 0029959906 scopus 로고    scopus 로고
    • Optimisation of radial basis and backpropagation neural networks for modelling auto-ignition temperature by quantitative-structure property relationships
    • Tetteh J., Metcalfe E., Howells S.L. Optimisation of radial basis and backpropagation neural networks for modelling auto-ignition temperature by quantitative-structure property relationships. Chemom. Intell. Lab. Syst. 1996, 32:177-191.
    • (1996) Chemom. Intell. Lab. Syst. , vol.32 , pp. 177-191
    • Tetteh, J.1    Metcalfe, E.2    Howells, S.L.3
  • 4
    • 0000322343 scopus 로고    scopus 로고
    • Prediction of autoignition temperatures of organic compounds from molecular structure
    • Mitchel B.E., Jurs P.C. Prediction of autoignition temperatures of organic compounds from molecular structure. J. Chem. Inf. Comput. Sci. 1997, 37:538-547.
    • (1997) J. Chem. Inf. Comput. Sci. , vol.37 , pp. 538-547
    • Mitchel, B.E.1    Jurs, P.C.2
  • 5
    • 0036934010 scopus 로고    scopus 로고
    • Prediction of autoignition temperatures (AITs) for hydrocarbons and compounds containing heteroatoms by the quantitative structure-property relationship
    • Kim Y.K., Le S.K., Kim J.H., Kim J.S., No K.T. Prediction of autoignition temperatures (AITs) for hydrocarbons and compounds containing heteroatoms by the quantitative structure-property relationship. J. Chem. Soc. Perk Trans. 2002, 2:2087-2092.
    • (2002) J. Chem. Soc. Perk Trans. , vol.2 , pp. 2087-2092
    • Kim, Y.K.1    Le, S.K.2    Kim, J.H.3    Kim, J.S.4    No, K.T.5
  • 6
    • 0142245649 scopus 로고    scopus 로고
    • Artificial neural network investigation of the structural group contribution method for predicting pure components auto ignition temperature
    • Albahri T.A., George R.S. Artificial neural network investigation of the structural group contribution method for predicting pure components auto ignition temperature. Ind. Eng. Chem. Res. 2003, 42:5708-5714.
    • (2003) Ind. Eng. Chem. Res. , vol.42 , pp. 5708-5714
    • Albahri, T.A.1    George, R.S.2
  • 7
    • 0042424916 scopus 로고    scopus 로고
    • Flammability characteristics of pure hydrocarbons
    • Albahri T.A. Flammability characteristics of pure hydrocarbons. Chem. Eng. Sci. 2003, 58:3629-3641.
    • (2003) Chem. Eng. Sci. , vol.58 , pp. 3629-3641
    • Albahri, T.A.1
  • 8
    • 43849095644 scopus 로고    scopus 로고
    • Advantages of support vector machine in QSPR studies for predicting auto-ignition temperatures of organic compounds
    • Pan Y., Jiang J., Wang R., Cao H. Advantages of support vector machine in QSPR studies for predicting auto-ignition temperatures of organic compounds. Chemom. Intell. Lab. Syst. 2008, 92:169-178.
    • (2008) Chemom. Intell. Lab. Syst. , vol.92 , pp. 169-178
    • Pan, Y.1    Jiang, J.2    Wang, R.3    Cao, H.4
  • 9
    • 46449109393 scopus 로고    scopus 로고
    • Prediction of auto-ignition temperatures of hydrocarbons by neural network based on atom-type electrotopological-state indices
    • Pan Y., Jiang J., Wang R., Cao H., Zhao J. Prediction of auto-ignition temperatures of hydrocarbons by neural network based on atom-type electrotopological-state indices. J. Hazard. Mater. 2008, 157:510-517.
    • (2008) J. Hazard. Mater. , vol.157 , pp. 510-517
    • Pan, Y.1    Jiang, J.2    Wang, R.3    Cao, H.4    Zhao, J.5
  • 10
    • 62649105196 scopus 로고    scopus 로고
    • Predicting the auto-ignition temperatures of organic compounds from molecular structure using support vector machine
    • Pan Y., Jiang J., Wang R., Cao H., Cui R. Predicting the auto-ignition temperatures of organic compounds from molecular structure using support vector machine. J. Hazard. Mater. 2009, 164:1242-1249.
    • (2009) J. Hazard. Mater. , vol.164 , pp. 1242-1249
    • Pan, Y.1    Jiang, J.2    Wang, R.3    Cao, H.4    Cui, R.5
  • 11
    • 57649148549 scopus 로고    scopus 로고
    • Prediction of autoignition temperatures of organic compounds by the structural group contribution approach
    • Chen C.C., Liaw H.J., Kuo Y.Y. Prediction of autoignition temperatures of organic compounds by the structural group contribution approach. J. Hazard. Mater. 2009, 162:746-762.
    • (2009) J. Hazard. Mater. , vol.162 , pp. 746-762
    • Chen, C.C.1    Liaw, H.J.2    Kuo, Y.Y.3
  • 13
    • 77958020996 scopus 로고    scopus 로고
    • Prediction of Henry's law constant of organic compounds in water from a new group-contribution-based model
    • Gharagheizi F., Abbasi R., Tirandazi B. Prediction of Henry's law constant of organic compounds in water from a new group-contribution-based model. Ind. Eng. Chem. Res. 2010, 49:10149-10152.
    • (2010) Ind. Eng. Chem. Res. , vol.49 , pp. 10149-10152
    • Gharagheizi, F.1    Abbasi, R.2    Tirandazi, B.3
  • 14
    • 78650085906 scopus 로고    scopus 로고
    • A New Neural Network Group Contribution Method for Estimation of Upper Flash Point of Pure Chemicals
    • Gharagheizi F., Abbasi R. A New Neural Network Group Contribution Method for Estimation of Upper Flash Point of Pure Chemicals. Ind. Eng. Chem. Res. 2010, 49:12658-12695.
    • (2010) Ind. Eng. Chem. Res. , vol.49 , pp. 12658-12695
    • Gharagheizi, F.1    Abbasi, R.2
  • 15
    • 78650130863 scopus 로고    scopus 로고
    • Artificial neural network modeling of solubilities of 21 commonly used industrial solid compounds in supercritical carbon dioxide
    • Gharagheizi F., Eslamimanesh A., Mohammadi A.H., Richon D. Artificial neural network modeling of solubilities of 21 commonly used industrial solid compounds in supercritical carbon dioxide. Ind. Eng. Chem. Res. 2011, 50:221-226.
    • (2011) Ind. Eng. Chem. Res. , vol.50 , pp. 221-226
    • Gharagheizi, F.1    Eslamimanesh, A.2    Mohammadi, A.H.3    Richon, D.4
  • 16
    • 0037199062 scopus 로고    scopus 로고
    • Modeling of thermodynamic properties using neural networks: application to refrigerants
    • Chouai A., Laugier S., Richon D. Modeling of thermodynamic properties using neural networks: application to refrigerants. Fluid Phase Equilib. 2002, 199:53-62.
    • (2002) Fluid Phase Equilib. , vol.199 , pp. 53-62
    • Chouai, A.1    Laugier, S.2    Richon, D.3
  • 17
    • 33748196548 scopus 로고    scopus 로고
    • Enhancement of the extended corresponding states techniques for thermodynamic modelling. I. Pure fluids
    • Piazza L., Scalabrin G., Marchi P., Richon D. Enhancement of the extended corresponding states techniques for thermodynamic modelling. I. Pure fluids. Int. J. Refrig. 2006, 29:1182-1194.
    • (2006) Int. J. Refrig. , vol.29 , pp. 1182-1194
    • Piazza, L.1    Scalabrin, G.2    Marchi, P.3    Richon, D.4
  • 18
    • 33748191245 scopus 로고    scopus 로고
    • Enhancement of the extended corresponding states techniques for thermodynamic modelling. II. Mixtures
    • Scalabrin G., Marchi P., Bettio L., Richon D. Enhancement of the extended corresponding states techniques for thermodynamic modelling. II. Mixtures. Int. J. Refrig. 2006, 29:1195-1207.
    • (2006) Int. J. Refrig. , vol.29 , pp. 1195-1207
    • Scalabrin, G.1    Marchi, P.2    Bettio, L.3    Richon, D.4
  • 19
    • 37349044609 scopus 로고    scopus 로고
    • Predicting the hydrate stability zones of natural gases using artificial neural networks
    • Chapoy A., Mohammadi A.H., Richon D. Predicting the hydrate stability zones of natural gases using artificial neural networks. Oil Gas Sci. Technol.: Rev. IFP 2007, 62:701-706.
    • (2007) Oil Gas Sci. Technol.: Rev. IFP , vol.62 , pp. 701-706
    • Chapoy, A.1    Mohammadi, A.H.2    Richon, D.3
  • 20
    • 77950627492 scopus 로고    scopus 로고
    • Hydrate phase equilibria for hydrogen+water and hydrogen+tetrahydrofuran+water systems: predictions of dissociation conditions using an artificial neural network algorithm
    • Mohammadi A.H., Richon D. Hydrate phase equilibria for hydrogen+water and hydrogen+tetrahydrofuran+water systems: predictions of dissociation conditions using an artificial neural network algorithm. Chem. Eng. Sci. 2010, 65:3352-3355.
    • (2010) Chem. Eng. Sci. , vol.65 , pp. 3352-3355
    • Mohammadi, A.H.1    Richon, D.2
  • 21
    • 56749130739 scopus 로고    scopus 로고
    • Estimating sulfur content of hydrogen sulfide at elevated temperatures and pressures using an artificial neural network algorithm
    • Mohammadi A.H., Richon D. Estimating sulfur content of hydrogen sulfide at elevated temperatures and pressures using an artificial neural network algorithm. Ind. Eng. Chem. Res. 2008, 47:8499-8504.
    • (2008) Ind. Eng. Chem. Res. , vol.47 , pp. 8499-8504
    • Mohammadi, A.H.1    Richon, D.2
  • 22
    • 49249083725 scopus 로고    scopus 로고
    • A mathematical model based on artificial neural network technique for estimating liquid water-hydrate equilibrium of water-hydrocarbon system
    • Mohammadi A.H., Richon D. A mathematical model based on artificial neural network technique for estimating liquid water-hydrate equilibrium of water-hydrocarbon system. Ind. Eng. Chem. Res. 2008, 47:4966-4970.
    • (2008) Ind. Eng. Chem. Res. , vol.47 , pp. 4966-4970
    • Mohammadi, A.H.1    Richon, D.2
  • 23
    • 44349122317 scopus 로고    scopus 로고
    • Determination of critical properties and acentric factors of petroleum fractions using artificial neural networks
    • Mohammadi A.H., Afzal W., Richon D. Determination of critical properties and acentric factors of petroleum fractions using artificial neural networks. Ind. Eng. Chem. Res. 2008, 47:3225-3232.
    • (2008) Ind. Eng. Chem. Res. , vol.47 , pp. 3225-3232
    • Mohammadi, A.H.1    Afzal, W.2    Richon, D.3
  • 24
    • 33847622042 scopus 로고    scopus 로고
    • Use of artificial neural networks for estimating water content of natural gases
    • Mohammadi A.H., Richon D. Use of artificial neural networks for estimating water content of natural gases. Ind. Eng. Chem. Res. 2007, 46:1431-1438.
    • (2007) Ind. Eng. Chem. Res. , vol.46 , pp. 1431-1438
    • Mohammadi, A.H.1    Richon, D.2
  • 25
    • 77957335222 scopus 로고    scopus 로고
    • Determining phase diagrams of tetrahydrofuran+methane, carbon dioxide or nitrogen clathrate hydrates using an artificial neural network algorithm
    • Mohammadi A.H., Martínez-López J.F., Richon D. Determining phase diagrams of tetrahydrofuran+methane, carbon dioxide or nitrogen clathrate hydrates using an artificial neural network algorithm. Chem. Eng. Sci. 2010, 65:6059-6063.
    • (2010) Chem. Eng. Sci. , vol.65 , pp. 6059-6063
    • Mohammadi, A.H.1    Martínez-López, J.F.2    Richon, D.3
  • 26
    • 74349126098 scopus 로고    scopus 로고
    • Extension of an artificial neural network algorithm for estimating sulfur content of sour gases at elevated temperatures and pressures
    • Mehrpooya M., Mohammadi A.H., Richon D. Extension of an artificial neural network algorithm for estimating sulfur content of sour gases at elevated temperatures and pressures. Ind. Eng. Chem. Res. 2010, 49:439-442.
    • (2010) Ind. Eng. Chem. Res. , vol.49 , pp. 439-442
    • Mehrpooya, M.1    Mohammadi, A.H.2    Richon, D.3
  • 27
    • 77953232183 scopus 로고    scopus 로고
    • Use of an artificial neural network algorithm to predict hydrate dissociation conditions for hydrogen+water and hydrogen+tetra-n-butyl ammonium bromide+water systems
    • Mohammadi A.H., Belandria V., Richon D. Use of an artificial neural network algorithm to predict hydrate dissociation conditions for hydrogen+water and hydrogen+tetra-n-butyl ammonium bromide+water systems. Chem. Eng. Sci. 2010, 65:4302-4305.
    • (2010) Chem. Eng. Sci. , vol.65 , pp. 4302-4305
    • Mohammadi, A.H.1    Belandria, V.2    Richon, D.3
  • 28
    • 69249213956 scopus 로고    scopus 로고
    • A new group contribution-based method for estimation of lower flammability limit of pure compounds
    • Gharagheizi F. A new group contribution-based method for estimation of lower flammability limit of pure compounds. J. Hazard Mater. 2009, 170:595-604.
    • (2009) J. Hazard Mater. , vol.170 , pp. 595-604
    • Gharagheizi, F.1
  • 29
    • 68849090799 scopus 로고    scopus 로고
    • New neural network group contribution model for estimation of lower flammability limit temperature of pure compounds
    • Gharagheizi F. New neural network group contribution model for estimation of lower flammability limit temperature of pure compounds. Ind. Eng. Chem. Res. 2009, 48:7406-7416.
    • (2009) Ind. Eng. Chem. Res. , vol.48 , pp. 7406-7416
    • Gharagheizi, F.1
  • 30
    • 67649216406 scopus 로고    scopus 로고
    • Prediction of standard enthalpy of formation of pure compounds using molecular structure
    • Gharagheizi F. Prediction of standard enthalpy of formation of pure compounds using molecular structure. Aust. J. Chem. 2009, 62:376-381.
    • (2009) Aust. J. Chem. , vol.62 , pp. 376-381
    • Gharagheizi, F.1
  • 31
    • 61549105859 scopus 로고    scopus 로고
    • Estimation of aniline point temperature of pure hydrocarbons: a quantitative structure-property relationship approach
    • Gharagheizi F., Tirandazi B., Barzin R. Estimation of aniline point temperature of pure hydrocarbons: a quantitative structure-property relationship approach. Ind. Eng. Chem. Res. 2009, 48:1678-1682.
    • (2009) Ind. Eng. Chem. Res. , vol.48 , pp. 1678-1682
    • Gharagheizi, F.1    Tirandazi, B.2    Barzin, R.3
  • 32
    • 60549103767 scopus 로고    scopus 로고
    • Prediction of some important physical properties of sulfur compounds using QSPR models
    • Gharagheizi F., Mehrpooya M. Prediction of some important physical properties of sulfur compounds using QSPR models. Mol. Divers. 2008, 12:143-155.
    • (2008) Mol. Divers. , vol.12 , pp. 143-155
    • Gharagheizi, F.1    Mehrpooya, M.2
  • 33
    • 54049139304 scopus 로고    scopus 로고
    • A new neural network-group contribution method for estimation of flash point
    • Gharagheizi F., Alamdari R.F., Angaji M.T. A new neural network-group contribution method for estimation of flash point. Energy Fuel 2008, 22:1628-1635.
    • (2008) Energy Fuel , vol.22 , pp. 1628-1635
    • Gharagheizi, F.1    Alamdari, R.F.2    Angaji, M.T.3
  • 34
    • 53849109008 scopus 로고    scopus 로고
    • Prediction of Watson characterization factor of hydrocarbon compounds from their molecular properties
    • Gharagheizi F., Fazeli A. Prediction of Watson characterization factor of hydrocarbon compounds from their molecular properties. QSAR Comb. Sci. 2008, 27:758-767.
    • (2008) QSAR Comb. Sci. , vol.27 , pp. 758-767
    • Gharagheizi, F.1    Fazeli, A.2
  • 35
    • 38149048424 scopus 로고    scopus 로고
    • A molecular-based model for prediction of solubility of c60 fullerene in various solvents
    • Gharagheizi F., Alamdari R.F. A molecular-based model for prediction of solubility of c60 fullerene in various solvents. Fullerenes, Nanotubes, Carbon, Nanostruct. 2008, 16:40-57.
    • (2008) Fullerenes, Nanotubes, Carbon, Nanostruct. , vol.16 , pp. 40-57
    • Gharagheizi, F.1    Alamdari, R.F.2
  • 36
    • 35348997170 scopus 로고    scopus 로고
    • A new neural network quantitative structure-property relationship for prediction of θ (Lower Critical Solution Temperature) of polymer solutions
    • Article no 114
    • Gharagheizi F. A new neural network quantitative structure-property relationship for prediction of θ (Lower Critical Solution Temperature) of polymer solutions. e-Polymers 2007, Article no 114.
    • (2007) e-Polymers
    • Gharagheizi, F.1
  • 37
    • 53849129396 scopus 로고    scopus 로고
    • QSPR studies for solubility parameter by means of genetic algorithm-based multivariate linear regression and generalized regression neural network
    • Gharagheizi F. QSPR studies for solubility parameter by means of genetic algorithm-based multivariate linear regression and generalized regression neural network. QSAR Comb. Sci. 2008, 27:165-170.
    • (2008) QSAR Comb. Sci. , vol.27 , pp. 165-170
    • Gharagheizi, F.1
  • 38
    • 77954796539 scopus 로고    scopus 로고
    • A chemical structure-based model for estimation of upper flammability limit of pure compounds
    • Gharagheizi F. A chemical structure-based model for estimation of upper flammability limit of pure compounds. Energy Fuel 2010, 27:3867-3871.
    • (2010) Energy Fuel , vol.27 , pp. 3867-3871
    • Gharagheizi, F.1
  • 39
    • 34249900700 scopus 로고    scopus 로고
    • Prediction of standard enthalpy of formation by a QSPR model
    • Vatani A., Mehrpooya M., Gharagheizi F. Prediction of standard enthalpy of formation by a QSPR model. Int. J. Mol. Sci. 2007, 8:407-432.
    • (2007) Int. J. Mol. Sci. , vol.8 , pp. 407-432
    • Vatani, A.1    Mehrpooya, M.2    Gharagheizi, F.3
  • 40
    • 85167050826 scopus 로고    scopus 로고
    • A Molecular approach for prediction of sulfur compounds solubility parameters, phosphorus sulfur and silicon and related elements
    • Mehrpooya M., Gharagheizi F. A Molecular approach for prediction of sulfur compounds solubility parameters, phosphorus sulfur and silicon and related elements. Phosphorus Sulfur 2010, 185:204-210.
    • (2010) Phosphorus Sulfur , vol.185 , pp. 204-210
    • Mehrpooya, M.1    Gharagheizi, F.2
  • 41
    • 0034963531 scopus 로고    scopus 로고
    • Artificial neural networks in renewable energy systems applications: a review
    • Kalogirou S.A. Artificial neural networks in renewable energy systems applications: a review. Renew. Sust. Energy Rev. 2001, 5:373-401.
    • (2001) Renew. Sust. Energy Rev. , vol.5 , pp. 373-401
    • Kalogirou, S.A.1
  • 43
    • 34248389661 scopus 로고    scopus 로고
    • QSPR analysis for intrinsic viscosity of polymer solutions by means of GA-MLR and RBFNN
    • Gharagheizi F. QSPR analysis for intrinsic viscosity of polymer solutions by means of GA-MLR and RBFNN. Comput. Mater. Sci. 2007, 40:159-165.
    • (2007) Comput. Mater. Sci. , vol.40 , pp. 159-165
    • Gharagheizi, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.