메뉴 건너뛰기




Volumn 192, Issue 6, 2011, Pages 949-957

Metabolic status rather than cell cycle signals control quiescence entry and exit

Author keywords

[No Author keywords available]

Indexed keywords

ADENOSINE TRIPHOSPHATE; CARBON; GLUCOSE; MARKER;

EID: 79955518863     PISSN: 00219525     EISSN: 00219525     Source Type: Journal    
DOI: 10.1083/jcb.201009028     Document Type: Article
Times cited : (108)

References (39)
  • 1
    • 33745623641 scopus 로고    scopus 로고
    • Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures
    • Benn, S.W. Ruby, M. Veenhuis, F. Madeo, M. Werner-Washburne. 2006. Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures. J. Cell Biol. 174:89-100.
    • (2006) J. Cell Biol. , vol.174 , pp. 89-100
    • Benn, S.W.1    Ruby, M.2    Veenhuis, F.3    Madeo, M.4    Werner-Washburne5
  • 3
    • 0025782828 scopus 로고
    • Protein synthesis requirements for nuclear division, cytokinesis, and cell separation in Saccharomyces cerevisiae
    • Burke, D.J., D. Church. 1991. Protein synthesis requirements for nuclear division, cytokinesis, and cell separation in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:3691-3698.
    • (1991) Mol. Cell. Biol. , vol.11 , pp. 3691-3698
    • Burke, D.J.1    Church, D.2
  • 4
    • 33644984490 scopus 로고    scopus 로고
    • A new description of cellular quiescence
    • Coller, H.A., L. Sang, J.M. Roberts. 2006. A new description of cellular quiescence. PLoS Biol. 4:e83.
    • (2006) PLoS Biol , vol.4
    • Coller, H.A.1    Sang, L.2    Roberts, J.M.3
  • 5
    • 0037337879 scopus 로고    scopus 로고
    • Reappraisal of serum starvation, the restriction point, G0, and G1 phase arrest points
    • Cooper, S. 2003. Reappraisal of serum starvation, the restriction point, G0, and G1 phase arrest points. FASEB J. 17:333-340.
    • (2003) FASEB J , vol.17 , pp. 333-340
    • Cooper, S.1
  • 7
    • 0022898251 scopus 로고
    • Fission yeast enters the stationary phase G0 state from either mitotic G1 or G2
    • Costello, G., L. Rodgers, D. Beach. 1986. Fission yeast enters the stationary phase G0 state from either mitotic G1 or G2. Curr. Genet. 11:119-125.
    • (1986) Curr. Genet. , vol.11 , pp. 119-125
    • Costello, G.1    Rodgers, L.2    Beach, D.3
  • 8
    • 0025953705 scopus 로고
    • Glucose induces cAMP-independent growth-related changes in stationary-phase cells of Saccharomyces cerevisiae
    • Granot, D., M. Snyder. 1991. Glucose induces cAMP-independent growth-related changes in stationary-phase cells of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 88:5724-5728.
    • (1991) Proc. Natl. Acad. Sci. USA. , vol.88 , pp. 5724-5728
    • Granot, D.1    Snyder, M.2
  • 9
    • 0027163926 scopus 로고
    • Carbon source induces growth of stationary phase yeast cells, independent of carbon source metabolism
    • Granot, D., M. Snyder. 1993. Carbon source induces growth of stationary phase yeast cells, independent of carbon source metabolism. Yeast. 9:465-479.
    • (1993) Yeast , vol.9 , pp. 465-479
    • Granot, D.1    Snyder, M.2
  • 11
    • 0017660982 scopus 로고
    • Unequal division in Saccharomyces cerevisiae and its implications for the control of cell division
    • Hartwell, L.H., M.W. Unger. 1977. Unequal division in Saccharomyces cerevisiae and its implications for the control of cell division. J. Cell Biol. 75:422-435.
    • (1977) J. Cell Biol. , vol.75 , pp. 422-435
    • Hartwell, L.H.1    Unger, M.W.2
  • 12
    • 0015954720 scopus 로고
    • Genetic control of the cell division cycle in yeast
    • Hartwell, L.H., J. Culotti, J.R. Pringle, B.J. Reid. 1974. Genetic control of the cell division cycle in yeast. Science. 183:46-51.
    • (1974) Science , vol.183 , pp. 46-51
    • Hartwell, L.H.1    Culotti, J.2    Pringle, J.R.3    Reid, B.J.4
  • 13
    • 0017581306 scopus 로고
    • Coordination of growth with cell division in the yeast Saccharomyces cerevisiae
    • Johnston, G.C., J.R. Pringle, L.H. Hartwell. 1977. Coordination of growth with cell division in the yeast Saccharomyces cerevisiae. Exp. Cell Res. 105:79-98.
    • (1977) Exp. Cell Res. , vol.105 , pp. 79-98
    • Johnston, G.C.1    Pringle, J.R.2    Hartwell, L.H.3
  • 14
    • 44649161981 scopus 로고    scopus 로고
    • Reversible cytoplasmic localization of the proteasome in quiescent yeast cells
    • Laporte, D., B. Salin, B. Daignan-Fornier, I. Sagot. 2008. Reversible cytoplasmic localization of the proteasome in quiescent yeast cells. J. Cell Biol. 181:737-745.
    • (2008) J. Cell Biol. , vol.181 , pp. 737-745
    • Laporte, D.1    Salin, B.2    Daignan-Fornier, B.3    Sagot, I.4
  • 15
    • 0029950703 scopus 로고    scopus 로고
    • Heat-shock protein 104 expression is sufficient for thermotolerance in yeast
    • Lindquist, S., G. Kim. 1996. Heat-shock protein 104 expression is sufficient for thermotolerance in yeast. Proc. Natl. Acad. Sci. USA. 93:5301-5306.
    • (1996) Proc. Natl. Acad. Sci. USA. , vol.93 , pp. 5301-5306
    • Lindquist, S.1    Kim, G.2
  • 16
    • 33846979785 scopus 로고    scopus 로고
    • Revised procedures for yeast metabolites extraction: application to a glucose pulse to carbon-limited yeast cultures, which reveals a transient activation of the purine salvage pathway
    • Loret, M.O., L. Pedersen, J. François. 2007. Revised procedures for yeast metabolites extraction: application to a glucose pulse to carbon-limited yeast cultures, which reveals a transient activation of the purine salvage pathway. Yeast. 24:47-60.
    • (2007) Yeast , vol.24 , pp. 47-60
    • Loret, M.O.1    Pedersen, L.2    François, J.3
  • 17
    • 64049092699 scopus 로고    scopus 로고
    • Slow growth induces heat-shock resistance in normal and respiratory-deficient yeast
    • Lu, C., M.J. Brauer, D. Botstein. 2009. Slow growth induces heat-shock resistance in normal and respiratory-deficient yeast. Mol. Biol. Cell. 20:891-903.
    • (2009) Mol. Biol. Cell. , vol.20 , pp. 891-903
    • Lu, C.1    Brauer, M.J.2    Botstein, D.3
  • 19
    • 78649692853 scopus 로고    scopus 로고
    • On getting there from here
    • McKnight, S.L. 2010. On getting there from here. Science. 330:1338-1339.
    • (2010) Science , vol.330 , pp. 1338-1339
    • McKnight, S.L.1
  • 21
    • 0003418645 scopus 로고
    • A restriction point for control of normal animal cell proliferation
    • Pardee, A.B. 1974. A restriction point for control of normal animal cell proliferation. Proc. Natl. Acad. Sci. USA. 71:1286-1290.
    • (1974) Proc. Natl. Acad. Sci. USA. , vol.71 , pp. 1286-1290
    • Pardee, A.B.1
  • 22
    • 0027135501 scopus 로고
    • The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins
    • Parsell, D.A., S. Lindquist. 1993. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27:437-496.
    • (1993) Annu. Rev. Genet. , vol.27 , pp. 437-496
    • Parsell, D.A.1    Lindquist, S.2
  • 23
    • 0031913369 scopus 로고    scopus 로고
    • Differential role of Hsps and trehalose in stress tolerance
    • Piper, P. 1998. Differential role of Hsps and trehalose in stress tolerance. Trends Microbiol. 6:43-44.
    • (1998) Trends Microbiol , vol.6 , pp. 43-44
    • Piper, P.1
  • 24
    • 0020407066 scopus 로고
    • Control of the yeast cell cycle by protein synthesis
    • Popolo, L., M. Vanoni, L. Alberghina. 1982. Control of the yeast cell cycle by protein synthesis. Exp. Cell Res. 142:69-78.
    • (1982) Exp. Cell Res. , vol.142 , pp. 69-78
    • Popolo, L.1    Vanoni, M.2    Alberghina, L.3
  • 25
    • 17044399754 scopus 로고    scopus 로고
    • Genome-wide analyses reveal RNA polymerase II located upstream of genes poised for rapid response upon S. cerevisiae stationary phase exit
    • Radonjic, M., J.C. Andrau, P. Lijnzaad, P. Kemmeren, T.T. Kockelkorn, D. van Leenen, N.L. van Berkum, F.C. Holstege. 2005. Genome-wide analyses reveal RNA polymerase II located upstream of genes poised for rapid response upon S. cerevisiae stationary phase exit. Mol. Cell. 18:171-183.
    • (2005) Mol. Cell. , vol.18 , pp. 171-183
    • Radonjic, M.1    Andrau, J.C.2    Lijnzaad, P.3    Kemmeren, P.4    Kockelkorn, T.T.5    van Leenen, D.6    van Berkum, N.L.7    Holstege, F.C.8
  • 26
    • 0036141585 scopus 로고    scopus 로고
    • Yeast formins regulate cell polarity by controlling the assembly of actin cables
    • Sagot, I., S.K. Klee, D. Pellman. 2002. Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nat. Cell Biol. 4:42-50.
    • (2002) Nat. Cell Biol. , vol.4 , pp. 42-50
    • Sagot, I.1    Klee, S.K.2    Pellman, D.3
  • 27
    • 33750522651 scopus 로고    scopus 로고
    • Actin bodies in yeast quiescent cells: an immediately available actin reserve?
    • Sagot, I., B. Pinson, B. Salin, B. Daignan-Fornier. 2006. Actin bodies in yeast quiescent cells: an immediately available actin reserve? Mol. Biol. Cell. 17:4645-4655.
    • (2006) Mol. Biol. Cell. , vol.17 , pp. 4645-4655
    • Sagot, I.1    Pinson, B.2    Salin, B.3    Daignan-Fornier, B.4
  • 28
    • 50049113600 scopus 로고    scopus 로고
    • Polarized growth in the absence of F-actin in Saccharomyces cerevisiae exiting quiescence
    • Sahin, A., B. Daignan-Fornier, I. Sagot. 2008. Polarized growth in the absence of F-actin in Saccharomyces cerevisiae exiting quiescence. PLoS ONE. 3:e2556.
    • (2008) PLoS ONE , vol.3
    • Sahin, A.1    Daignan-Fornier, B.2    Sagot, I.3
  • 29
    • 41649103662 scopus 로고    scopus 로고
    • A gene-trap strategy identifies quiescence-induced genes in synchronized myoblasts
    • Sambasivan, R., G.K. Pavlath, J. Dhawan. 2008. A gene-trap strategy identifies quiescence-induced genes in synchronized myoblasts. J. Biosci. 33:27-44.
    • (2008) J. Biosci. , vol.33 , pp. 27-44
    • Sambasivan, R.1    Pavlath, G.K.2    Dhawan, J.3
  • 31
    • 0017527790 scopus 로고
    • Cell cycle of Saccharomyces cerevisiae in populations growing at different rates
    • Slater, M.L., S.O. Sharrow, J.J. Gart. 1977. Cell cycle of Saccharomyces cerevisiae in populations growing at different rates. Proc. Natl. Acad. Sci. USA. 74:3850-3854.
    • (1977) Proc. Natl. Acad. Sci. USA. , vol.74 , pp. 3850-3854
    • Slater, M.L.1    Sharrow, S.O.2    Gart, J.J.3
  • 33
    • 0019127205 scopus 로고
    • Genes which control cell proliferation in the yeast Saccharomyces cerevisiae
    • Sudbery, P.E., A.R. Goodey, B.L. Carter. 1980. Genes which control cell proliferation in the yeast Saccharomyces cerevisiae. Nature. 288:401-404.
    • (1980) Nature , vol.288 , pp. 401-404
    • Sudbery, P.E.1    Goodey, A.R.2    Carter, B.L.3
  • 34
    • 0017068871 scopus 로고
    • Control of cell division in Saccharomyces cerevisiae by methionyl-tRNA
    • Unger, M.W., L.H. Hartwell. 1976. Control of cell division in Saccharomyces cerevisiae by methionyl-tRNA. Proc. Natl. Acad. Sci. USA. 73:1664-1668.
    • (1976) Proc. Natl. Acad. Sci. USA. , vol.73 , pp. 1664-1668
    • Unger, M.W.1    Hartwell, L.H.2
  • 35
    • 0027157840 scopus 로고
    • Yeast cells can enter a quiescent state through G1, S, G2, or M phase of the cell cycle
    • Wei, W., P. Nurse, D. Broek. 1993. Yeast cells can enter a quiescent state through G1, S, G2, or M phase of the cell cycle. Cancer Res. 53:1867-1870.
    • (1993) Cancer Res , vol.53 , pp. 1867-1870
    • Wei, W.1    Nurse, P.2    Broek, D.3
  • 36
    • 0033373342 scopus 로고    scopus 로고
    • Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae
    • Wieczorke, R., S. Krampe, T. Weierstall, K. Freidel, C.P. Hollenberg, E. Boles. 1999. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett. 464:123-128.
    • (1999) FEBS Lett , vol.464 , pp. 123-128
    • Wieczorke, R.1    Krampe, S.2    Weierstall, T.3    Freidel, K.4    Hollenberg, C.P.5    Boles, E.6
  • 38
    • 1542357664 scopus 로고    scopus 로고
    • Global analysis of nutrient control of gene expression in Saccharomyces cerevisiae during growth and starvation
    • Wu, J., N. Zhang, A. Hayes, K. Panoutsopoulou, S.G. Oliver. 2004. Global analysis of nutrient control of gene expression in Saccharomyces cerevisiae during growth and starvation. Proc. Natl. Acad. Sci. USA. 101:3148-3153.
    • (2004) Proc. Natl. Acad. Sci. USA. , vol.101 , pp. 3148-3153
    • Wu, J.1    Zhang, N.2    Hayes, A.3    Panoutsopoulou, K.4    Oliver, S.G.5
  • 39
    • 60749127330 scopus 로고    scopus 로고
    • Glucose regulates transcription in yeast through a network of signaling pathways
    • Zaman, S., S.I. Lippman, L. Schneper, N. Slonim, J.R. Broach. 2009. Glucose regulates transcription in yeast through a network of signaling pathways. Mol. Syst. Biol. 5:245.
    • (2009) Mol. Syst. Biol. , vol.5 , pp. 245
    • Zaman, S.1    Lippman, S.I.2    Schneper, L.3    Slonim, N.4    Broach, J.R.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.