메뉴 건너뛰기




Volumn 247, Issue 5, 2009, Pages 1505-1528

Viability for differential equations driven by fractional Brownian motion

Author keywords

Fractional Brownian motion; Stochastic differential equations; Viability

Indexed keywords


EID: 67650163462     PISSN: 00220396     EISSN: 10902732     Source Type: Journal    
DOI: 10.1016/j.jde.2009.06.002     Document Type: Article
Times cited : (19)

References (18)
  • 1
    • 0035537291 scopus 로고    scopus 로고
    • Stochastic calculus with respect to Gaussian processes
    • Alòs E., Mazet O., and Nualart D. Stochastic calculus with respect to Gaussian processes. Ann. Probab. 29 (2001) 766-801
    • (2001) Ann. Probab. , vol.29 , pp. 766-801
    • Alòs, E.1    Mazet, O.2    Nualart, D.3
  • 4
    • 15444362058 scopus 로고    scopus 로고
    • The viability theorem for stochastic differential inclusions
    • Aubin J.-P., and Da Prato G. The viability theorem for stochastic differential inclusions. Stoch. Anal. Appl. 16 1 (1998) 1-15
    • (1998) Stoch. Anal. Appl. , vol.16 , Issue.1 , pp. 1-15
    • Aubin, J.-P.1    Da Prato, G.2
  • 6
    • 0037270163 scopus 로고    scopus 로고
    • Stochastic integration with respect to fractional Brownian motion
    • Carmona P., and Coutin L. Stochastic integration with respect to fractional Brownian motion. Ann. Inst. H. Poincaré Probab. Statist. 39 (2003) 27-68
    • (2003) Ann. Inst. H. Poincaré Probab. Statist. , vol.39 , pp. 27-68
    • Carmona, P.1    Coutin, L.2
  • 7
    • 0042637937 scopus 로고    scopus 로고
    • Stochastic analysis of the fractional Brownian motion
    • Decreusefond L., and Üstünel A.S. Stochastic analysis of the fractional Brownian motion. Potential Anal. 10 (1998) 177-214
    • (1998) Potential Anal. , vol.10 , pp. 177-214
    • Decreusefond, L.1    Üstünel, A.S.2
  • 8
    • 0033878593 scopus 로고    scopus 로고
    • Stochastic calculus for fractional Brownian motion I, Theory
    • Duncan T.E., Hu Y., and Pasik-Duncan B. Stochastic calculus for fractional Brownian motion I, Theory. SIAM J. Control Optim. 38 2 (2000) 582-612
    • (2000) SIAM J. Control Optim. , vol.38 , Issue.2 , pp. 582-612
    • Duncan, T.E.1    Hu, Y.2    Pasik-Duncan, B.3
  • 9
    • 80053283918 scopus 로고
    • Viability for constrained stochastic differential equations
    • Gautier S., and Thibault L. Viability for constrained stochastic differential equations. Differential Integral Equations 6 (1993) 1394-1414
    • (1993) Differential Integral Equations , vol.6 , pp. 1394-1414
    • Gautier, S.1    Thibault, L.2
  • 11
    • 0000501589 scopus 로고
    • Fractional Brownian motions, fractional noises and applications
    • Mandelbrot B.B., and Van Ness J.W. Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 (1968) 422-437
    • (1968) SIAM Rev. , vol.10 , pp. 422-437
    • Mandelbrot, B.B.1    Van Ness, J.W.2
  • 12
    • 0041302689 scopus 로고    scopus 로고
    • A note on viability under distribution constraints
    • Michta M. A note on viability under distribution constraints. Discuss. Math., Algebra Stoch. Methods 18 2 (1998) 215-225
    • (1998) Discuss. Math., Algebra Stoch. Methods , vol.18 , Issue.2 , pp. 215-225
    • Michta, M.1
  • 13
    • 0003192245 scopus 로고
    • A note on stochastic invariance for Ito equations
    • Milian A. A note on stochastic invariance for Ito equations. Bull. Pol. Acad. Sci. Math. 41 2 (1993) 139-150
    • (1993) Bull. Pol. Acad. Sci. Math. , vol.41 , Issue.2 , pp. 139-150
    • Milian, A.1
  • 14
    • 0141856393 scopus 로고    scopus 로고
    • Viability of set-valued Ito equation
    • Motyl J. Viability of set-valued Ito equation. Bull. Pol. Acad. Sci. Math. 47 1 (1999) 91-103
    • (1999) Bull. Pol. Acad. Sci. Math. , vol.47 , Issue.1 , pp. 91-103
    • Motyl, J.1
  • 15
    • 0038771348 scopus 로고    scopus 로고
    • Differential equations driven by fractional Brownian motion
    • Nualart D., and Rascanu A. Differential equations driven by fractional Brownian motion. Collect. Math. 53 (2002) 55-81
    • (2002) Collect. Math. , vol.53 , pp. 55-81
    • Nualart, D.1    Rascanu, A.2
  • 16
    • 0000821514 scopus 로고
    • An inequality of the Hölder type connected with Stieltjes integration
    • Young L.C. An inequality of the Hölder type connected with Stieltjes integration. Acta Math. 67 (1936) 251-282
    • (1936) Acta Math. , vol.67 , pp. 251-282
    • Young, L.C.1
  • 17
    • 0038290919 scopus 로고    scopus 로고
    • Integration with respect to fractal functions and stochastic calculus. I
    • Zähle M. Integration with respect to fractal functions and stochastic calculus. I. Probab. Theory Related Fields 111 (1998) 333-374
    • (1998) Probab. Theory Related Fields , vol.111 , pp. 333-374
    • Zähle, M.1
  • 18
    • 0013113290 scopus 로고    scopus 로고
    • On the link between fractional and stochastic calculus
    • Crauel H., and Gundlach M. (Eds). Bremen 1997, Springer
    • Zähle M. On the link between fractional and stochastic calculus. In: Crauel H., and Gundlach M. (Eds). Stochastic Dynamics. Bremen 1997 (1999), Springer 305-325
    • (1999) Stochastic Dynamics , pp. 305-325
    • Zähle, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.